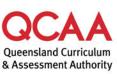
Engineering marking guide and response

External assessment 2023

Combination response (85 marks)


Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

- recognise and describe machine and mechanism problems, and mechanics, materials science and control technologies concepts and principles, in relation to machines and mechanisms
- 2. symbolise and explain ideas and solutions in relation to machines and mechanisms
- 3. analyse machine and mechanism problems, and information in relation to machines and mechanisms
- 5. synthesise information and ideas to predict possible machine and mechanism solutions.

Note: Objectives 4, 6, 7 and 8 are not assessed in this instrument.

Purpose

This document consists of a marking guide and a sample response.

The marking guide:

- provides a tool for calibrating external assessment markers to ensure reliability of results
- indicates the correlation, for each question, between mark allocation and qualities at each level of the mark range
- informs schools and students about how marks are matched to qualities in student responses.

The sample response demonstrates the qualities of a high-level response.

Mark allocation

Where a response does not meet any of the descriptors for a question or a criterion, a mark of '0' will be recorded.

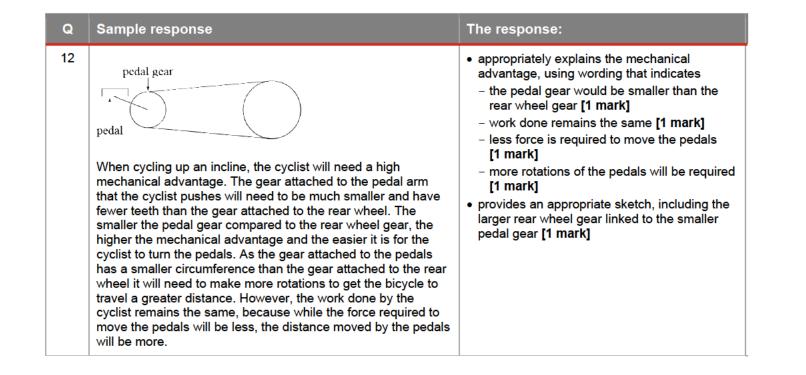
Where no response to a question has been made, a mark of 'N' will be recorded.

Allowing for FT error — refers to 'follow through', where an error in the prior section of working is used later in the response, a mark (or marks) for the rest of the response can be awarded so long as it still demonstrates the correct conceptual understanding or skill in the rest of the response.

This mark may be implied by subsequent working — the full mathematical reasoning and/or working, as outlined in the sample response and associated mark, is not explicitly stated in the student response, but by virtue of subsequent working there is sufficient evidence to award the mark/s.

Rounding for results to intermediate steps in calculation questions are considered correct when provided within a range of two to a maximum of nine decimal places as determined using a scientific calculator. Final answers must be provided to the nearest whole unit or as otherwise stated in the question.

Marking guide


Multiple choice

Question	Response
1	В
2	С
3	А
4	D
5	В
6 ¹	A and B
7	D
8	С
9	A
10	С

¹ The multiple-choice scrutiny panel reviewed the question and determined that there were two keys for this item.

Short response

Q	Sample response	The response:
11	 automobile bumper bar electrical wall socket face shield hard hat 	 provides a contemporary engineering application [1 mark] provides a second contemporary engineering application [1 mark] provides a third contemporary engineering application [1 mark] provides a fourth contemporary engineering application [1 mark]

Q	Sampl	e respo	nse						The response:
13a)	A 0 0 0 1 1 1 1	B 0 1 1 0 0 1 1	C 0 1 0 1 0 1 0 1	D 0 0 0 0 0 1 1	E 0 0 1 0 0 0 1	F 0 0 1 0 0 1 0 0	Q 0 0 1 0 0 1 1 1		 correctly completes column D [1 mark] correctly completes column E [1 mark] correctly completes column F [1 mark] correctly completes column Q [1 mark]
13b)	will outp becaus operatin If the so XOR ga will driv If the w OR gate	put Ó and e the XC ng the m olar pand ate will h re the ele ind turbi	d only th DR gate notor. el is off nave an ectric mo ne is off ve an in	e solar will pre- and the input of otor. and the put of 1	panel w vent the wind tur 0 and 1 e solar p	vill drive wind tu bine an and on panel an	the electronic from the electronic from the electronic from the from the time of the will be the will be the time of the time	e XOR gate ctric motor om are on, the rind turbine are on, the ar panel to	 uses wording indicating that when all three inputs are on the solar panel drives the electric motor [1 mark] the XOR gate will not allow the wind turbine to drive the motor [1 mark] uses wording indicating that when the solar panel is off and the wind turbine and timer are on, the XOR gate allows the wind turbine to drive the motor [1 mark] the wind turbine is off and the solar panel and timer are on, the OR gate allows the solar panel to drive the motor [1 mark]

Q	Sample response	The response:
14	A mechanical engineer might explore similar problems involving machines that automatically press and move components from one location to another in the automotive manufacturing industry. They would determine solution success criteria to develop, test and evaluate ideas and a prototype, using knowledge of how metal is plasticly deformed into components, and how movement sensors control the function of automated stamping machines. A solution to the problem would then be manufactured and refined after evaluation of its function using success criteria.	 appropriately explains how a mechanical engineer might use the problem-solving process, using wording that indicates phases of the problem-solving process in engineering explore [1 mark] develop or generate [1 mark] evaluate or refine [1 mark] one area of engineering expertise [1 mark] another area of engineering expertise [1 mark]

Q	Sample response	The response:
15a)	Ferrite Pearlite Cementite	 provides an appropriate sketch of the microstructures that clearly distinguishes between ferrite and pearlite [1 mark] identifies ferrite [1 mark] clearly distinguishes laminar structure of pearlite [1 mark] identifies pearlite [1 mark]
15b)	The microstructures of medium carbon steel include grains of ferrite together with areas of very strong pearlite. The pearlite is a lamellar structure of soft, ductile ferrite and hard, brittle cementite. The amount of pearlite in the composition provides medium carbon steel with high strength and good toughness, which can withstand the heavy loads and repeated impact stresses that occur when trains are running on rails.	 appropriately explains medium carbon steel's usefulness as a material for train rails, referring to the microstructures of medium carbon steel including lamellar or layered soft, ductile ferrite [1 mark] hard, brittle cementite [1 mark] an appropriate mechanical property of medium carbon steel linked to use [1 mark] a second appropriate mechanical property of medium carbon steel linked to use [1 mark]

Q	Sample response	The response:
16	$KE = \frac{1}{2} \text{mv}^2$ Storage container mass = $\frac{2 \times KE}{v^2} = \frac{2 \times 850}{1.5^2} = \frac{1700}{2.25} = 755.56 \text{ kg}$ PE = mgh PE = 755.56 × 9.8 × 2 = 14 808.98 J	 provides correct formula and substituted values for mass [1 mark] determines mass [1 mark] provides correct formula and substituted values for PE [1 mark] determines PE [1 mark]
	ME = KE + PE ME = 850 + 14 808.98 ME = 15 659 J	 determines the answer in J to the nearest whole unit [1 mark]

Q	Sample response	The response:
17	PE= mgh 980= 40 x 9.8 x h	
	$h = \frac{980}{40 \times 9.8} = 2.5 \text{ m}$ $VR = \frac{D_E}{D_L} = \frac{\pi D}{\text{thread pitch}} = \frac{\pi \times 30}{2.5} = 37.70$	 determines the vertical distance the load is raised [1 mark] provides correct formula and substituted values for VR of the thread mechanism [1 mark]
	$efficiency = \frac{MA}{VR}$ MA=0.62 x 37.70 = 23.37	 determines VR of the thread mechanism [1 mark]
	$MA = \frac{F_L}{F_E}$	• determines MA [1 mark]
	$F_E = \frac{40 \times 9.8}{23.37} = 16.77 \text{ N}$	determines effort [1 mark]
	Number of rotations of input shaft = $\frac{2.5 \text{ m}}{0.0025} = 1000$	 determines rotations of shaft [1 mark]
	Distance travelled by effort = 1000 x π x 0.03 = 94.25 m	• determines distance effort [1 mark]
	W = Fd = 16.77 x 94.25 = 1580.57 J	determines input Work [1 mark]
	$P = \frac{W}{t} = \frac{1580.57}{15} = 105.4 \mathrm{W}$	• determines Input power [1 mark]

Q	Sample response	The response:
	OR Output Work is equal to 980 J of PE to load, thus output power $P = \frac{W}{t} = \frac{980}{15}$ $= 65.33 \text{ W}$ Efficiency = output / input Input Power (motor power) = output / efficiency Input power = 65.33 / 0.62 = 105.37 W Input motor power = 105.4 W	 OR Identify that output work =change in PE [1 mark] Correctly identify power equation [1 mark] Correctly substitute into power equation [1 mark] Correctly determine output power [1 mark] Correctly identify efficiency equals output power/ input power [1 mark] Correctly substitute into equation [1 mark] Correctly substitute into equation [1 mark] Correctly determine input power [1 mark] Correctly determine input power [1 mark]
		Correct unit for power [1 mark]

Q	Sample response	The response:
18a)	$VR = GR = \frac{d_E}{d_L} = \frac{number\ of\ teeth\ on\ driven}{number\ of\ teeth\ on\ driver} = \frac{8}{32} = 0.25$	
	Distance moved by bicycle wheel in 1 rotation of driven = $\pi D = \pi \times 0.7 = 2.199 m$	 determines the VR / GR of the driven to driver gears [1 mark]
	Number of rotations of driven for 15m = $\frac{15}{2.199}$ = 6.82 rotations	
	$\therefore Number of rotations of driver = 6.82 \times 0.25 = 1.7$	 determines answer to one decimal place [1 mark]
18b)	Drive shaft rotations = Number of rotations of the driver gear = 1.7	 correct interpretation of the mechanical system [1 mark]
	∴ The number of rotations of the drive shaft = 2	 determines answer to the nearest whole unit [1 mark]
18c)	Distance moved by motor drive shaft = $2 \times \pi \times 0.02 = 0.126m$	determines the distance moved by the motor drive shaft [1 mark]
	$W = Fd = 600 \times 0.126 = 75.6 J$	determines work [1 mark]
	$P = \frac{W}{t} = \frac{75.6}{2} = 37.8 W \approx 38 W$ The output power of the electric motor is 38W	 determines the answer in W to the nearest whole unit [1 mark]

Q	Sample response	The response:
19	Forces acting on the ramp	
	$F_f = \mu F_N = \mu mg cos \theta$	
	$F_{f} = 0.35 \times 2 \times 9.8 \times \cos 25^{\circ}$	
	$F_{f} = 6.22 \text{ N}$	 determines the force of friction on the ramp [1 mark]
	Parallel force down the ramp	
	$F_{p} = mgsin\theta$	
	$F_p = 2 \times 9.8 \times \sin 25^{\circ}$	
	$F_p = 8.28 N$	 determines parallel force down the ramp [1 mark]
	Resultant force down the ramp	
	$F_r = F_p - F_f$	
	$F_r = 8.28 - 6.22$	
	$F_r = 2.06 N$	 determines resultant force down the ramp [1 mark]
	Acceleration down the ramp	
	$\mathbf{F} = \mathbf{ma}$	
	$a = \frac{F}{m} = \frac{2.06}{2} = 1.03 \text{ m/s}^2$	• determines ramp acceleration [1 mark]
	Velocity at the bottom of the ramp	
	$v^2 = u^2 + 2as$	
	$v^2 = 0.5^2 + 2 \times 1.03 \times 4$	 provides correct formula and substituted
	$v^2 = 8.49$	values for velocity [1 mark]
	$v = \sqrt{8.49}$	
	v = 2.91 m/s	 determines velocity at the bottom of the ramp [1 mark]

Q	Sample response	The response:
	Horizontal surface	
	$F_f = \mu F_N = \mu mg$	
	$F_f = 0.35 \times 2 \times 9.8 = 6.86 N$	 determines force of friction on the
	$\mathbf{F} = \mathbf{ma}$	horizontal surface [1 mark]
	Deceleration $=\frac{F}{m} = \frac{6.86}{2} = 3.43 \text{ m/s}^2$	 determines deceleration on the horizontal surface [1 mark]
	Distance box slides along horizontal surface	
	$v^2 = u^2 + 2as$	
	$s = \frac{v^2 - u^2}{2a}$	
	$s = \frac{0^2 - 2.91^2}{10^2 - 2.91^2}$	
	$s = \frac{3}{2 \times 3.43}$	
	$s = \frac{-8.47}{-6.86}$	
	-6.86 s = 1.235 m	 determines the answer to the nearest
	The box slides 1.235 m along the horizontal surface before	whole unit [1 mark]
	coming to a complete stop.	

Q	Sample response	The response:
20	Uniform or constant velocity ∴ forces up incline = forces down incline	 indicates that the system is in equilibrium [1 mark]
	Let the coefficient of friction = μ_k 160 N = F _f + weight force component parallel to the incline	 identifies three forces parallel to the incline [1 mark]
	$160 = \mu_k F_N + \text{mg} \sin 10$ $160 - \text{mg} \sin 10 = \mu_k \times \text{mg} \cos 10$ $160 - 20 \times 9.8 \times \sin 10 = \mu_k \times 20 \times 9.8 \times \cos 10$ $\mu_k = \frac{160 - 196 \times \sin 10}{196 \times \cos 10}$ $\mu_k = \frac{160 - 34.04}{193} = 0.65$	 provides correct formula and substituted values [1 mark] correctly manipulates equation to isolate coefficient of friction [1 mark]
	∴ the coefficient of friction = 0.65	 determines the answer to two decimal places [1 mark]

Q	Sample response	The response:
21	First pump	
	$W = $ force \times distance = Fd	
	W = mgh	
	$W = 500 \times 9.8 \times 6$	
	W = 29400J	 determines the work done by the first pump [1 mark]
	Power output: First pump	
	$P = \frac{\text{work done}}{\text{work done}} = \frac{W}{W}$	
	time taken t	
	$P = \frac{29\ 400}{60}$	
		- determines the neuron sutmut of the first
	P = 490 W	 determines the power output of the first pump [1 mark]
	Power input: First pump	
	$\eta = \frac{\text{useful output}}{\text{input}}$	
	$input = \frac{useful output}{\eta}$	
	Power input = $\frac{490}{0.8}$	
	Power input = 612.5 W	 determines the power input of the first pump [1 mark]
	Second pump	
	$W = $ force \times distance = Fd	
	W = mgh	
	$W = 500 \times 9.8 \times 4$	
	$W = 19\ 600\ J$	 determines the work done by the second pump [1 mark]

Q	Sample response	The response:
	Power output: Second pump	
	$P = \frac{\text{work done}}{\text{work done}} = \frac{W}{t}$	
	time taken t	
	$P = \frac{19\ 600}{60}$	
	P = 326.67 W	 determines the power output of the second pump [1 mark]
	Power input: Second pump	
	$\eta = \frac{\text{useful output}}{1 + 1 + 1}$	
	input	
	input = $\frac{\text{useful output}}{\text{useful output}}$	
	η	
	Power input = $\frac{326.67}{2}$	
	Power input = $\frac{526.67}{0.75}$	
	Power input = 435.56 W	 determines the power input of the second pump [1 mark]
	Overall power input of two-pump system	
	Power = $612.5 + 435.56$	
	Power = 1048.06 W	• determines the overall power input of the
	rower – 1040.00 W	current two-stage system [1 mark]
	New single-pump system	
	Power input = 1048.06 W	
	Power output = $90\% \times 1048.06$	
	Power output = 943.25 W	 determines the power output of the new single-pump system [1 mark]

Q	Sample response	The response:
	New single-pump system: mass of water delivered per minute	
	$P = \frac{W}{t}$	
	$W = P \times t$	
	$W = 943.25 \times 60$	
	$W = 56\ 595\ J$	 determines the work done by the new single-pump system [1 mark]
	W = mgh	
	$m = \frac{W}{W}$	
	$m = \frac{1}{gh}$	
	$m = \frac{56595}{9.8 \times 10}$	
	m = 577.5 kg = 578 litres per minute	determines the answer in litres per minute
	∴ The new single-pump system will deliver 578 litres of water per minute directly to the main reservoir.	to the nearest whole unit [1 mark]

© State of Queensland (QCAA) 2023

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2023