	School code	
School name		
Given name/s	Attach your	
Family name	barcode ID label here	
External assessment 2024	Book of books us	ed
External assessment 2024		
	Ouestion and response bool	ζ

Chemistry

Paper 2

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response book.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- QCAA formula and data book provided.
- Planning paper will not be marked.

Section 1 (52 marks)

• 8 short response questions

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

Section 1

Instructions

- If you need more space for a response, use the additional pages at the back of this book.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 1 (3 marks)

A 30.00 mL aliquot of aqueous hydrochloric acid (HCl) with a pH of 2.00 was diluted with 2970.00 mL of water to make up a final volume of 3.00 L of aqueous HCl solution.

a) Determine the concentration of hydrogen ions in the original 30.00 mL aliquot of HCl(aq).

[1 mark]

b) Calculate the pH of the final 3.00 L solution of HCl(aq). Show your working.

[2 marks]

QUESTION 2 (6 marks)

Phenol red (HIn) is a weak acid that acts as an indicator as shown.

$$HIn(aq) \rightleftharpoons In^{-}(aq) + H^{+}(aq)$$

a) Identify the conjugate base of phenol red.

b) Determine the dissociation constant (K_a) of phenol red.

c) Explain the relationship between the pH range of colour change for phenol red and its pK_a value.

[4 marks]

[1 mark]

[1 mark]

Do	not	write	outside	this	box.

QUESTION 3 (9 marks)

The concentration, pH and dissociation constant (K_a) of aqueous solutions of ethanoic acid and two unknown monoprotic acids, I and II, are shown.

Acid	Concentration (M)	рН	K _a
CH ₃ COOH(aq)	0.2		1.8×10^{-5}
Ι	0.2	1.9	6.6×10^{-4}
II	0.1	1.1	1.3×10^{6}

a) Compare the relative strength of an aqueous solution of acid I and CH₃COOH(aq).

[3 marks]

Similarity:

Difference:

Significance:

b)	Determine whether an aqueous solution of acid I or acid II would have a higher electrical conductivity. Explain your reasoning.	[3 marks]
c)	Calculate the pH of 0.2 M CH ₃ COOH(aq). Show your working.	[3 marks]

QUESTION 4 (11 marks)

Bioethanol can be synthesised from plants rich in starch. Amylose and amylopectin in the starch are converted to glucose, which then undergoes fermentation to produce ethanol.

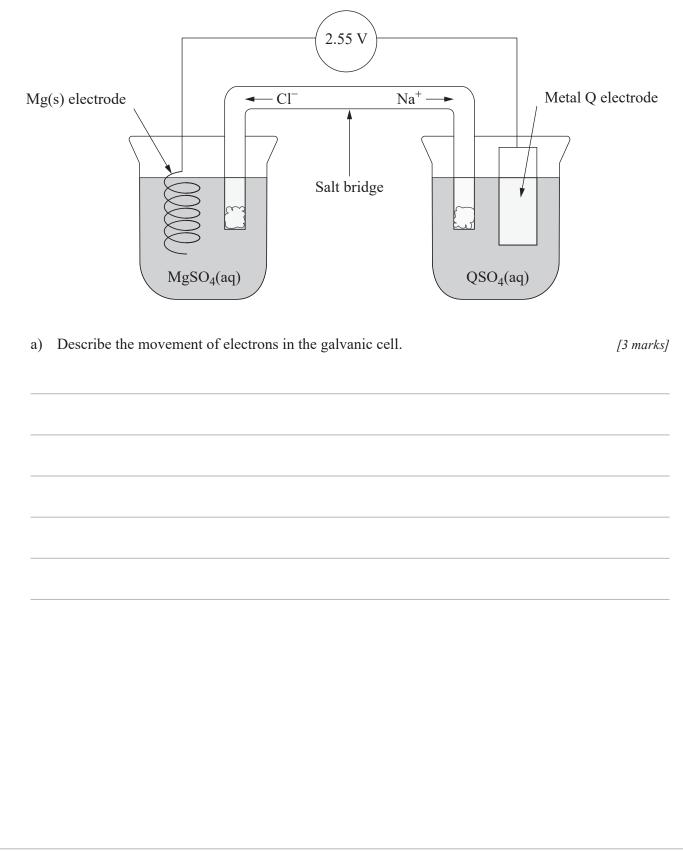
 $\begin{array}{cccc} (C_6H_{10}O_5)_x & \underbrace{\text{enzymes}}_{(\text{starch})} & C_6H_{12}O_6 & \underbrace{\text{yeast}}_{(\text{glucose})} & 2(C_2H_5OH) + 2CO_2 \\ (\text{bioethanol}) \end{array}$

a) Explain the role of enzymes in converting the amylose and amylopectin in starch to glucose.

[2 marks]

b) Describe the structure of amylose and amylopectin by completing the table.

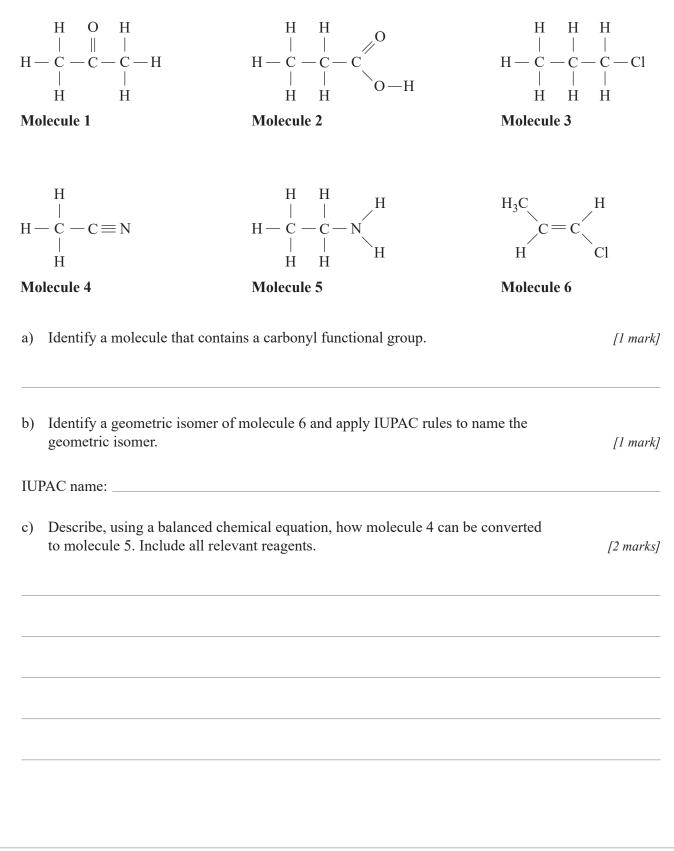
[4 marks]

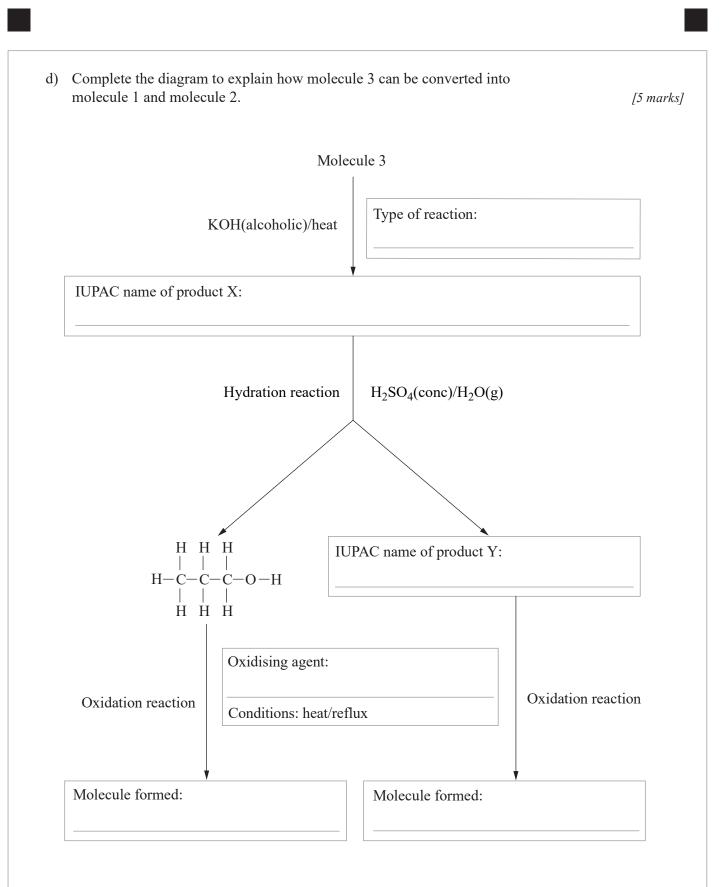

	Amylose	Amylopectin
Monomer		
Glycosidic linkage		
Chain structure		
Shape		

Note: If you make a mistake in the table, cancel it by ruling a single diagonal line through your work and use the additional response space at the back of this question and response book.

c)	Determine whether the fermentation of glucose to bioethanol is a redox reaction. Explain your reasoning.	[3 marks]
d)	Calculate the atom economy for the fermentation of glucose to bioethanol. Show your working.	[2 marks]

QUESTION 5 (8 marks)

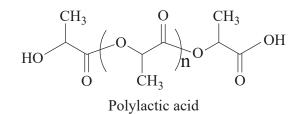

The diagram shows a galvanic cell with a cell potential of 2.55 V under standard conditions.



b)	Determine the half-equation and standard electrode potential for the half-cell that contains metal Q. Include states in your half-equation.	[2 m
c)	Identify one limitation associated with standard reduction potentials.	[1 n
d)	Determine whether metal Q is a stronger reducing agent than metallic copper (Cu). Explain your reasoning.	[2 m

QUESTION 6 (9 marks)

Six molecules were selected to investigate functional groups and the arrangement of atoms.



Note: If you make a mistake in the diagram, cancel it by ruling a single diagonal line through your work and use the additional response space at the back of this question and response book.

QUESTION 7 (4 marks)

Polylactic acid (PLA) is a biodegradable plastic that can be decomposed by microorganisms into carbon dioxide (CO₂), water and biomass.

a) Explain how the biodegradability of polylactic acid is related to its structure.

[2 marks]

b) Describe, using a diagram, the structural formula of lactic acid.

[2 marks]

Note: If you make a mistake in the diagram, cancel it by ruling a single diagonal line through your work and use the additional response space at the back of this question and response book.

QUESTION 8 (2 marks)

In the aqueous solution of a chromate salt, an equilibrium exists between the yellow chromate (CrO_4^{2-}) ions and the orange dichromate $(Cr_2O_7^{2-})$ ions. This equilibrium can be represented by the equation shown.

 $2\operatorname{CrO_4}^{2^-}(\operatorname{aq}) + 2\operatorname{H^+}(\operatorname{aq}) \rightleftharpoons \operatorname{Cr_2O_7}^{2^-}(\operatorname{aq}) + \operatorname{H_2O}(\operatorname{l})$ (yellow) (orange)

Explain, at an atomic level, why no colour change occurs once the chromate–dichromate solution has established equilibrium.

END OF PAPER

ADDITIONAL PAGE FOR 	STUDENT RESPONSES
-----------------------------	-------------------

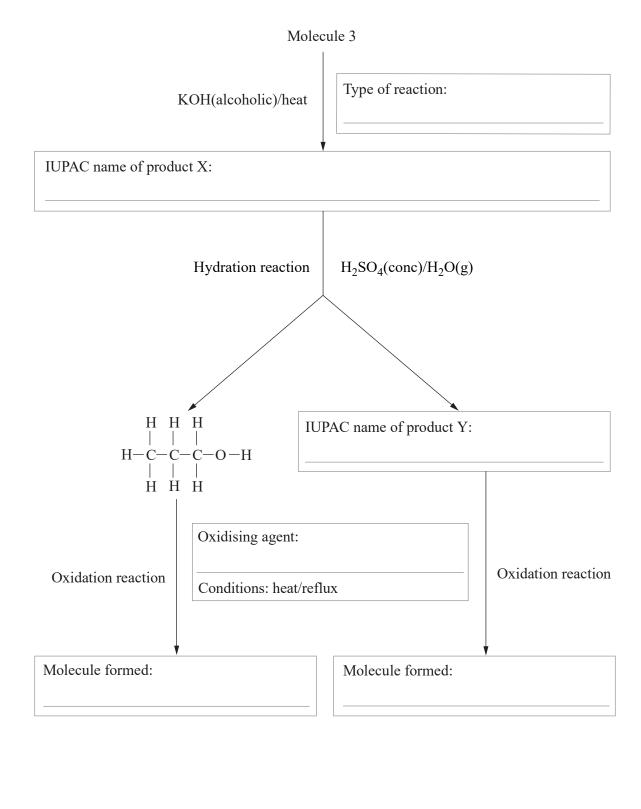
Do not write	outside this	box.	

Do not write	outside	this	box.
--------------	---------	------	------

ADDITIONAL PAGE FOR STUDENT RESPONSES

Write the question number you are responding to.

Write the question number you are responding to.


ADDITIONAL RESPONSE SPACE FOR QUESTION 4b)

If you want this table to be marked, draw a single diagonal line through your original response.

	Amylose	Amylopectin
Monomer		
Glycosidic linkage		
Chain structure		
Shape		

ADDITIONAL RESPONSE SPACE FOR QUESTION 6d)

If you want this diagram to be marked, draw a single diagonal line through your original response.

© Tate of Queensland (QCAA) 2024

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2024