	-
	School code
School name	
Given name/s	Attach your
Family name	barcode ID label here
External assessment 2023	Book of books used

Question and response book

Chemistry

Paper 2

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response book.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- QCAA formula and data book provided.
- Planning paper will not be marked.

Section 1 (54 marks)

• 9 short response questions

Do not write on this page This page will not be marked

Section 1

Instructions

- If you need more space for a response, use the additional pages at the back of this book.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response,
 i.e. See page ...
 - If you do not do this, your original response will be marked.

Do not write on this page This page will not be marked

Question 1 (2 marks)

Polylactic acid (PLA) and low-density polyethylene (LDPE) are both used to produce plastic wrapping film.

Plastic	Composition	Density (g/cm ³)	Tensile stress (MPa)	Elongation (%)	Degradation rate
PLA	plant-based	1.24	60	6	slow
LDPE	petrochemical- based	0.92	12	148	none

Analyse the data to discuss one advantage and one disadvantage of using PLA rather than LDPE to produce plastic wrapping film.

Advantage:

Disadvantage:

Question 2 (3 marks)

Compare the structure of α -helix and β -pleated sheets in the secondary structure of proteins.

Similarity:	 	 	
Difference:		 	
Significance:	 	 	

Question 3 (7 marks)

An experiment was conducted at standard state conditions to investigate the potential difference (V) produced by different galvanic cells. The three cells used in the experiment are shown.

(a)	Predict which cell produced the highest voltage. Explain your
	reasoning. [3 marks]
(b)	Determine the maximum voltage that could be produced by a fourth galvanic cell constructed from any of the components used in the fir three cells. Use oxidation and reduction half-equations to justify your answer. [4 marks]

Question 4 (8 marks)

Compound C has the molecular formula $C_4H_{10}O$ and is either an alcohol, an aldehyde or a carboxylic acid.

(b)	Deduce	the	str	uctural	formula	and	IUPAC	name	of	two	isomers	of
	compou	nd C	. [2 mark	s]							

lsomer 1:

IUPAC name: _____

Isomer 2:

IUPAC name: ____

Note: If you make a mistake in the drawing, cancel it by ruling a single diagonal line through your work and use the additional response space at the back of this question and response book.

(c) Distinguish between structural and geometric isomers. [2 marks]

Question 5 (13 marks)

The table gives the properties of four monoprotic acids.

Acid	Concentration (mol L^{-1})	[H ⁺] (mol L ⁻¹)	рН	K _a
1	0.200	7.90×10^{-5}		
2	0.100	4.20×10^{-3}	2.34	1.80×10^{-4}
CH ₃ COOH(aq)	0.100			1.78×10^{-5}
HCl(aq)	0.010	1.00×10^{-2}	2.00	>1

(a) Determine the relative strength of acids 1 and 2 by contrasting their K_a values. [3 marks]

(b)	Write a balanced chemical equation for the dissociation of ethanoic acid (CH_3COOH) in water. [2 marks]
(c)	ldentify whether the conjugate base of ethanoic acid (CH ₃ COOH(aq)) amphiprotic. Explain your reasoning. [2 marks]
(d)	Calculate the pH of the aqueous solution of ethanoic acid (CH ₃ COOH) Show your working. [3 marks]
(e)	Determine the volume of water that would need to be added to 100.0 mL of HCl(aq) to change the pH from 2.00 to 3.00. Explain your reasoning. [3 marks]

9 of 17

Question 6 (6 marks)

The reaction shows the base hydrolysis (saponification) of a triglyceride to produce glycerol and a soap.

 $\begin{array}{c} O\\ \parallel\\ CH_2-O-C-(CH_2)_{14}-CH_3 \end{array} \qquad \qquad CH_2-OH\\ \parallel \end{array}$ $\begin{vmatrix} O \\ H \\ -O \\ -C \\ -(CH_2)_{14} - CH_3 + 3NaOH \longrightarrow CH - OH + 3H_3C - (CH_2)_{14} - C - ONa \end{vmatrix}$ Triglyceride Glycerol Soap (a) Identify which compound in the reaction is an ester. [1 mark] (b) Contrast the structure of saturated and unsaturated fatty acids. [1 mark]

[4	marks]			

ecomposed	to form metallic mercury (Hg) and oxygen gas (O_2).	
2HgO(s) ⇔	2Hg(l) + O ₂ (g)	
Drange	Silver Colourless	
(a) Identify [1 mark]	whether the reaction occurs in an open or closed system	ກ.
(b) Explain equilibr	why the colour of the system does not change once um is established. [3 marks]	

Question 8 (7 marks)

Two experiments were conducted to investigate the effect of temperature on the equilibrium formed during the decomposition of hydrogen iodide (HI).

Experiment	Initial (mol L	nitial concentration Equilibrium concentration (mol L^{-1})				entration	Kc
	[HI]	[H ₂]	[l ₂]	[HI]	[H ₂]	[l ₂]	
1	0.08	0.00	0.00		0.01		2.78×10^{-2}
2	0.00	0.06	0.06	0.06	0.03	0.03	

 $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$ $\Delta H = +53.6 \text{ kJ mol}^{-1}$

(a) Determine the concentration of HI(g) and $I_2(g)$ at equilibrium for experiment 1. [2 marks]

[HI]: _____

[l₂]:___

(b) Calculate the equilibrium constant (K_c) for experiment 2. Show your working. [2 marks]

(c) Determine which experiment was conducted at a higher temperature. Explain your reasoning. [3 marks]

Question 9 (4 marks)

Aspirin ($C_9H_8O_4$) can be produced from a reaction between salicylic acid ($C_7H_6O_3$) and acetic anhydride ($C_4H_6O_3$) with ethanoic acid being a minor product.

 $C_7H_6O_3(s) + C_4H_6O_3(aq) \rightarrow C_9H_8O_4(s) + C_2H_4O_2(aq)$

Calculate the mass of salicylic acid required to produce 8.25 g of aspirin if the percentage yield of the reaction is 60%. Show your working.

End of paper

Additional page for student responses
Write the question number you are responding to.

Additional page for student responses
Write the question number you are responding to.

Additional page for student responses

Write the question number you are responding to.

References

Question 4

Minor adaptation from Coblentz Society, Inc., 2-Butanol 2018, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Nist. gov, National Institute of Standards and Technology, U.S. Secretary of Commerce https://webbook.nist.gov/cgi/cbook.cgi?ID=C78922&Type=IR-SPEC&Index=1

 \bigcirc) \bigcirc State of Queensland (QCAA) 2024

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www. qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. Third-party materials referenced above are excluded from this licence. | Attribution: © State of Queensland (QCAA) 2024