External assessment 2023

Question and response book

Chemistry

Paper 2

Time allowed

- Perusal time - 10 minutes
- Working time - 90 minutes

General instructions

- Answer all questions in this question and response book.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- QCAA formula and data book provided.
- Planning paper will not be marked.

Section 1 (54 marks)

- 9 short response questions

School code

School name
\square
Given name/s
\square
Family name
\square

> Attach your barcode ID label here

Section 1

Instructions

- If you need more space for a response, use the additional pages at the back of this book.
- On the additional pages, write the question number you are responding to.
- Cancel any incorrect response by ruling a single diagonal line through your work.
- Write the page number of your alternative/additional response, i.e. See page ...
- If you do not do this, your original response will be marked.

Do not write on this page

This page will not be marked

Do not write outside this box.

Question 1 (2 marks)
Polylactic acid (PLA) and low-density polyethylene (LDPE) are both used to produce
plastic wrapping film.

Plastic	Composition	Density $\left({\left.\mathbf{g} / \mathbf{c m}^{3}\right)}\right.$	Tensile stress (MPa)	Elongation $(\%)$	Degradation rate
PLA	plant-based	1.24	60	6	slow
LDPE	petrochemical- based	0.92	12	148	none

Analyse the data to discuss one advantage and one disadvantage of using PLA
rather than LDPE to produce plastic wrapping film.
Advantage: Disadvantage:
Question 2 (3 marks)
Compare the structure of α-helix and β-pleated sheets in the secondary structure
of proteins.
Similarity:

Significance:

Do not write outside this box.

Question 3 (7 marks)

An experiment was conducted at standard state conditions to investigate the potential difference (V) produced by different galvanic cells. The three cells used in the experiment are shown.

Cell 1

Cell 2

Do not write outside this box.

Cell 3

(a) Predict which cell produced the highest voltage. Explain your reasoning. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.
(b) Determine the maximum voltage that could be produced by a fourth galvanic cell constructed from any of the components used in the first three cells. Use oxidation and reduction half-equations to justify your answer. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

Do not write on this page

This page will not be marked

Continue to the next page

Question 4 (8 marks)

Compound C has the molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ and is either an alcohol, an aldehyde or a carboxylic acid.

Compound C infrared spectrum

Do not write outside this box.
(a) Deduce the class of compound C. Explain your reasoning. [4 marks]
\qquad

Do not write outside this box.
(b) Deduce the structural formula and IUPAC name of two isomers of compound C. [2 marks]

Isomer 1:

IUPAC name: \qquad

Isomer 2:

IUPAC name: \qquad

Note: If you make a mistake in the drawing, cancel it by ruling a single diagonal line through your work and use the additional response space at the back of this question and response book.

Do not write outside this box.
(c) Distinguish between structural and geometric isomers. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.
Question 5 (13 marks)
The table gives the properties

Acid	Concentration $\left(\mathbf{m o l ~ L}^{-1}\right)$	$\left[\mathbf{H}^{+}\right]$ $\left(\mathbf{m o l ~ L}^{-1}\right)$	$\mathbf{p H}$	$\boldsymbol{K}_{\mathbf{a}}$
1	0.200	7.90×10^{-5}		
2	0.100	4.20×10^{-3}	2.34	1.80×10^{-4}
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$	0.100			1.78×10^{-5}
$\mathrm{HCl}(\mathrm{aq})$	0.010	1.00×10^{-2}	2.00	>1

(a) Determine the relative strength of acids 1 and 2 by contrasting their K_{a} values. [3 marks]

Do not write outside this box.
(b) Write a balanced chemical equation for the dissociation of ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ in water. [2 marks]
(c) Identify whether the conjugate base of ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})\right)$ is
amphiprotic. Explain your reasoning. [2 marks]

\square

(b) Write a balanced chemical equation for the dissociation of ethanoic acid
$\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ in water. [2 marks]
(c) Identify whether the conjugate base of ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})\right)$ is
amphiprotic. Explain your reasoning. [2 marks]

Do not write outside this box.
(d) Calculate the pH of the aqueous solution of ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$. Show your working. [3 marks]
[_工
(e) Determine the volume of water that would need to be added to 100.0 mL of
$\mathrm{HCl}(\mathrm{aq})$ to change the pH from 2.00 to 3.00 . Explain your reasoning. [3 marks]

Do not write outside this box.
Do not write on this page
This page will not be marked
Continue to the next page
Question 6 (6 marks)
The reaction shows the base hydrolysis (saponification) of a triglyceride to
produce glycerol and a soap.

(a) Identify which compound in the reaction is an ester. [1 mark]

Do not write outside this box.
(b) Contrast the structure of saturated and unsaturated fatty acids. [1 mark]
(c) Explain how the cleaning action of soap is related to its structure. [4 marks]

Do not write outside this box.

Question 7 (4 marks)

When heated in a sealed container, solid mercury(II) oxide (HgO) decomposed to form metallic mercury (Hg) and oxygen gas $\left(\mathrm{O}_{2}\right)$.
$2 \mathrm{HgO}(\mathrm{s}) \rightleftharpoons 2 \mathrm{Hg}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})$ Orange Silver Colourless
(a) Identify whether the reaction occurs in an open or closed system. [1 mark]
(b) Explain why the colour of the system does not change once equilibrium is established. [3 marks]

Do not write outside this box.
\square

Do not write outside this box.
Question 8 (7 marks)
Two experiments were conducted to investigate the effect of temperature on the equilibrium formed during the decomposition of hydrogen iodide (HI).
$\Delta H=+53.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Experiment	Initial concentration $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$				Equilibrium concentration $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$		$\boldsymbol{K}_{\mathbf{c}}$
	$[\mathrm{HI}]$	$\left[\mathrm{H}_{2}\right]$	$\left[\mathrm{I}_{2}\right]$	$[\mathrm{HI}]$	$\left[\mathrm{H}_{2}\right]$	$\left[\mathrm{I}_{2}\right]$	
	0.08	0.00	0.00		0.01		2.78×10^{-2}
2	0.00	0.06	0.06	0.06	0.03	0.03	

(a) Determine the concentration of $\mathrm{HI}(\mathrm{g})$ and $\mathrm{I}_{2}(\mathrm{~g})$ at equilibrium for experiment 1 .
[2 marks]
[H1]:
[$\left.I_{2}\right]:$

Do not write outside this box.
(b) Calculate the equilibrium constant $\left(K_{\mathrm{c}}\right)$ for experiment 2 . Show your working.
[2 marks]
[2 marks]
(c) Determine which experiment was conducted at a higher temperature.
Explain your reasoning. [3 marks $]$

Do not write outside this box.

Question 9 (4 marks)

Aspirin $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)$ can be produced from a reaction between salicylic acid $\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}\right)$ and acetic anhydride $\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}\right)$ with ethanoic acid being a minor product.
$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}(\mathrm{aq}) \rightarrow \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{aq})$
Calculate the mass of salicylic acid required to produce 8.25 g of aspirin if the percentage yield of the reaction is 60\%. Show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

End of paper

Do not write outside this box.

Additional page for student responses

Write the question number you are responding to.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

Additional page for student responses

Write the question number you are responding to.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

Additional page for student responses

Write the question number you are responding to.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

Additional page for student responses

Write the question number you are responding to.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

Additional page for student responses

Write the question number you are responding to.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Do not write outside this box.

Additional page for student responses

Write the question number you are responding to.

Additional page for student responses

Write the question number you are responding to.

Do not write outside this box.

References

Question 4

Minor adaptation from Coblentz Society, Inc., 2-Butanol 2018, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Nist.gov, National Institute of Standards and Technology, U.S. Secretary of Commerce https://webbook.nist.gov/cgi/cbook. cgi?ID=C78922\&Type=IR-SPEC\&Index=1
© State of Queensland (QCAA) 2024
Licence: https://creativecommons.org/licenses/by/4.0 |
Copyright notice: www.qcaa.qld.edu.au/copyright - lists the full terms and conditions, which specify certain exceptions to the licence. Third-party materials referenced above are excluded from this licence. | Attribution: © State of Queensland (QCAA) 2024

