Question and response book

Chemistry

Paper 2

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response book.
- · Write using black or blue pen.
- QCAA-approved calculator permitted.
- QCAA formula and data book provided.
- Planning paper will not be marked.

Section 1 (54 marks)

9 short response questions

LUI							
Scho	ol cod	de					
Scho	ol nar	me					
Give	n nam	ne/s					
Fami	ly nar	ne					
Book		of	boo	ks use	ed		
1	rcode	n your ID lal					

Section 1

Instructions

- If you need more space for a response, use the additional pages at the back of this book.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.

Do not write on this page
This page will not be marked

Question 1 (2 marks)

Polylactic acid (PLA) and low-density polyethylene (LDPE) are both used to produce plastic wrapping film.

Plastic	Composition	Density	Density Tensile stress Elongation Degradation	Elongation	Degradation
		(g/cm ³)	(MPa)	(%)	rate
PLA	plant-based	1.24	09	9	wols
LDPE	petrochemical-	0.92	12	148	none
	based				

Analyse the data to discuss one advantage and one disadvantage of using PLA rather than LDPE to produce plastic wrapping film.

Advantage: ______

Disadvantage: __

Question 2 (3 marks)	
Compare the structure of α -helix and β -pleated sheets in the secondary structure of proteins.	Ф
Similarity:	
Difference:	
Significance:	

Question 3 (7 marks)

An experiment was conducted at standard state conditions to investigate the potential difference (V) produced by different galvanic cells. The three cells used in the experiment are shown.

Cell 1

Cell 2

` '	Predict which cell produced the highest voltage. Explain your reasoning. [3 marks]

Do not write on this page
This page will not be marked

Continue to the next page

Question 4 (8 marks)

Compound C has the molecular formula $C_4H_{10}O$ and is either an alcohol, an aldehyde or a carboxylic acid.

(b) Deduce the structural formula and IUPAC name of two isomers of compound C. [2 marks] Isomer 1: IUPAC name: _____ Isomer 2: IUPAC name: _____

Note: If you make a mistake in the drawing, cancel it by ruling a single diagonal line through your work and use the additional response space at the back of this question and response book.

Question 5 (13 marks)

The table gives the properties of four monoprotic acids.

Acid	Concentration [H ⁺] (mol	[H ⁺] (mol L ⁻¹)	pH K _a	$K_{\rm a}$
_	0.200	7.90×10^{-5}		
2	0.100	4.20×10^{-3} 2.34 1.80×10^{-4}	2.34	1.80×10^{-4}
CH ₃ COOH(aq)	(aq) 0.100			1.78×10^{-5}
HCI(aq)	0.010	$1.00 \times 10^{-2} 2.00 > 1$	2.00	>1

(a) Determine the relative strength of acids 1 and 2 by contrasting their $K_{\rm a}$ values. [3 marks]

(b) Write a balanced chemical equation for the dissociation of ethanoic acid (CH ₃ COOH) in water. [2 marks]	(c) Identify whether the conjugate base of ethanoic acid ($\mathrm{CH_3COOH}(\mathrm{aq})$) is amphiprotic. Explain your reasoning. [2 marks]	
a outside this h	(c)	 ·

eous solution of ethanoic acid (CH ₃ COOH).	(e) Determine the volume of water that would need to be added to 100.0 mL of HCl(aq) to change the pH from 2.00 to 3.00. Explain your reasoning. [3 marks]
(d) Calculate the pH of the aqueous solution or Show your working. [3 marks]	(e) Determine the volume of water that would HCI(aq) to change the pH from 2.00 to 3.0

Do not write on this page This page will not be marked

Continue to the next page

Question 6 (6 marks)

The reaction shows the base hydrolysis (saponification) of a triglyceride to produce glycerol and a soap.

Soap Glycerol **Triglyceride**

(a) Identify which compound in the reaction is an ester. [1 mark]

(b) Contrast the struck (c) Explain how the	(b) Contrast the structure of saturated and unsaturated fatty acids. [1 mark]	(c) Explain how the cleaning action of soap is related to its structure. [4 marks]			
	(b) Contrast the structure of satur	(c) Explain how the cleaning actic			

Question 7 (4 marks)

When heated in a sealed container, solid mercury(II) oxide (HgO) decomposed to form metallic mercury (Hg) and oxygen gas (O_2) .

$$2HgO(s) \rightleftharpoons 2Hg(I) + O_2(g)$$

Orange Silver Colourless

(a) Identify whether the reaction occurs in an open or closed system. [1 mark]

(b) Explain why the colour of the system does not change once equilibrium is established. [3 marks]

Question 8 (7 marks)

Two experiments were conducted to investigate the effect of temperature on the equilibrium formed during the decomposition of hydrogen iodide (HI).

$$2HI(g) \rightleftharpoons H_2(g) + I_2(g)$$

$$\Delta H = +53.6 \text{ kJ mol}^{-1}$$

	Initial o	Initial concentration	ation	Equilibrium concentration	am conce	utration	
Experiment (mol L ⁻¹)	(mol L	-1		(mol L^{-1})			K _c
	[H]	[H ₂]	[12]	[H]	[H ₂]	[12]	
_	0.08	00.00	0.00		0.01		2.78×10^{-2}
2	0.00	90.0	90.0	90.0	0.03	0.03	

(a) Determine the concentration of HI(g) and $I_2(g)$ at equilibrium for experiment 1.

[2 marks]

罡

[1₂]:____

(b) Calculate the equilibrium constant (K _c) for experiment 2. Show your working. [2 marks]	(c) Determine which experiment was conducted at a higher temperature. Explain your reasoning. [3 marks]	
b) Calculate the equ [2 marks]	c) Determine which (Explain your reason	
Do not write outsin	la thia hay	

Question 9 (4 marks)
Aspirin ($C_9H_8O_4$) can be produced from a reaction between salicylic acid ($C_7H_6O_3$) and acetic anhydride ($C_4H_6O_3$) with ethanoic acid being a minor product.
$C_7 H_6 O_3(s) \ + \ C_4 H_6 O_3(aq) \ \to \ C_9 H_8 O_4(s) \ + \ C_2 H_4 O_2(aq)$
Calculate the mass of salicylic acid required to produce 8.25 g of aspirin if the percentage yield of the reaction is 60%. Show your working.
End of paper
End of paper
Do not write outside this box.

References

Question 4

Minor adaptation from Coblentz Society, Inc., 2-Butanol 2018, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Nist.gov, National Institute of Standards and Technology, U.S. Secretary of Commerce https://webbook.nist.gov/cgi/cbook.cgi?ID=C78922&Type=IR-SPEC&Index=1

© State of Queensland (QCAA) 2024
Licence: https://creativecommons.org/licenses/by/4.0 |
Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. Third-party materials referenced above are excluded from this licence. | Attribution: © State of Queensland (QCAA) 2024