LUI								Scho	ool code	;				
Schoo	ol nam	ne												
Given	ı nam	e/s										your		
Famil	y nan	ne _							bar	code	: ID	label	here	
Exte	rnal	asse	ssme	ent 20)23			Воо	k] o	of [book	s used
								Quest	tion a	nd	res	spon	se b	ook

Chemistry

Paper 2

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response book.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- · QCAA formula and data book provided.
- Planning paper will not be marked.

Section 1 (54 marks)

• 9 short response questions

DO NOT WRITE ON THIS PAGE THIS PAGE WILL NOT BE MARKED

Section 1

Instructions

- If you need more space for a response, use the additional pages at the back of this book.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.

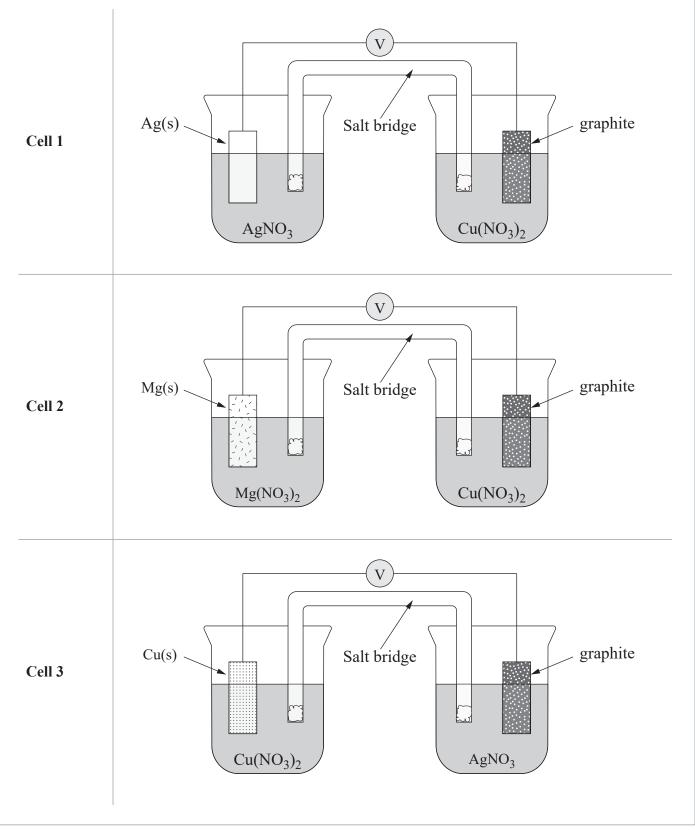
DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 1 (2 marks)

Polylactic acid (PLA) and low-density polyethylene (LDPE) are both used to produce plastic wrapping film.

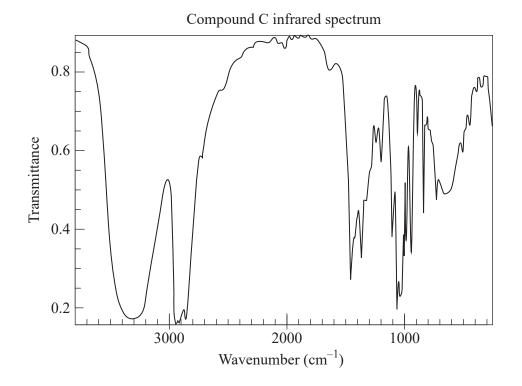
Plastic	Composition	Density (g/cm ³)	Tensile stress (MPa)	Elongation (%)	Degradation rate
PLA	plant-based	1.24	60	6	slow
LDPE	petrochemical-based	0.92	12	148	none


Analyse the data to discuss one advantage and one disadvantage of using PLA rather than LDPE to produce plastic wrapping film.

Advantage:		
Disadvantage:		

Compare the structure	e of α-helix and β-ple	eated sheets in the	e secondary structu	re of proteins.	
Similarity:					
Difference:					
Significance:					

QUESTION 3 (7 marks)


An experiment was conducted at standard state conditions to investigate the potential difference (V) produced by different galvanic cells. The three cells used in the experiment are shown.

(a)	Predict which cell produced the highest voltage. Explain your reasoning.	[3 marks
(b)	Determine the maximum voltage that could be produced by a fourth galvanic cell	
(0)	constructed from any of the components used in the first three cells. Use oxidation and reduction half-equations to justify your answer.	[4 marks

QUESTION 4 (8 marks)

Compound C has the molecular formula $C_4H_{10}O$ and is either an alcohol, an aldehyde or a carboxylic acid.

(a) Deduce the class of compound C. Explain your reasoning.	[4 marks]

(b) Deduce the stru	actural formula and IUPAC name of two isomers of compound C.	[2 mar
Isomer 1:		
IUPAC name:		
I		
Isomer 2:		
IUPAC name:	a mistake in the drawing, cancel it by ruling a single diagonal line	e through your
IUPAC name: Note: If you make a work and use the ac	a mistake in the drawing, cancel it by ruling a single diagonal line ditional response space at the back of this question and response	book.
IUPAC name: Note: If you make a work and use the ac	a mistake in the drawing, cancel it by ruling a single diagonal line	e through your book.
IUPAC name: Note: If you make a work and use the ac	a mistake in the drawing, cancel it by ruling a single diagonal line ditional response space at the back of this question and response	book.
IUPAC name: Note: If you make a work and use the ac	a mistake in the drawing, cancel it by ruling a single diagonal line ditional response space at the back of this question and response	book.
IUPAC name: Note: If you make a work and use the ac	a mistake in the drawing, cancel it by ruling a single diagonal line ditional response space at the back of this question and response	book.
IUPAC name:	a mistake in the drawing, cancel it by ruling a single diagonal line ditional response space at the back of this question and response	book.

QUESTION 5 (13 marks)

The table gives the properties of four monoprotic acids.

Acid	Concentration (mol L^{-1})	[H ⁺] (mol L ⁻¹)	pН	K _a
1	0.200	7.90×10^{-5}		
2	0.100	4.20×10^{-3}	2.34	1.80×10^{-4}
CH ₃ COOH(aq)	0.100			1.78×10^{-5}
HCl(aq)	0.010	1.00×10^{-2}	2.00	>1

Determine the relative strength of acids 1 and 2 by contrasting their K_a values.	[3 marks]
Write a balanced chemical equation for the dissociation of ethanoic acid (CH ₃ COOH) in water.	[2 marks _s
Identify whether the conjugate base of ethanoic acid (CH ₃ COOH(aq)) is amphiprotic. Explain your reasoning.	[2 marks _s
	Write a balanced chemical equation for the dissociation of ethanoic acid (CH ₃ COOH) in water. Identify whether the conjugate base of ethanoic acid (CH ₃ COOH(aq)) is amphiprotic.

()	Calculate the pH of the aqueous solution of ethanoic acid ($\mathrm{CH_3COOH}$). Show your working.	[3 mark
(e)	Determine the volume of water that would need to be added to 100.0 mL of HCl(aq)	
	to change the pH from 2.00 to 3.00. Explain your reasoning.	[3 mark

QUESTION 6 (6 marks)

Triglyceride

The reaction shows the base hydrolysis (saponification) of a triglyceride to produce glycerol and a soap.

(a) Identify which compound in the reaction is an ester. [1 mark]

Glycerol

Soap

(b) Contrast the structure of saturated and unsaturated fatty acids. [1 mark]

(c) Explain how the cleaning action of soap	p 12 relative to 110 bit details.	[4 mark

QUESTION 7 (4 marks)

When heated in a sealed container, solid mercury(II) oxide (HgO) decomposed to form metallic mercury (Hg) and oxygen gas (O_2) .

(a) Identify whether the reaction occurs in an open or closed system.

[1 mark]

(b) Explain why the colour of the system does not change once equilibrium is established. [3]

[3 marks]

QUESTION 8 (7 marks)

Two experiments were conducted to investigate the effect of temperature on the equilibrium formed during the decomposition of hydrogen iodide (HI).

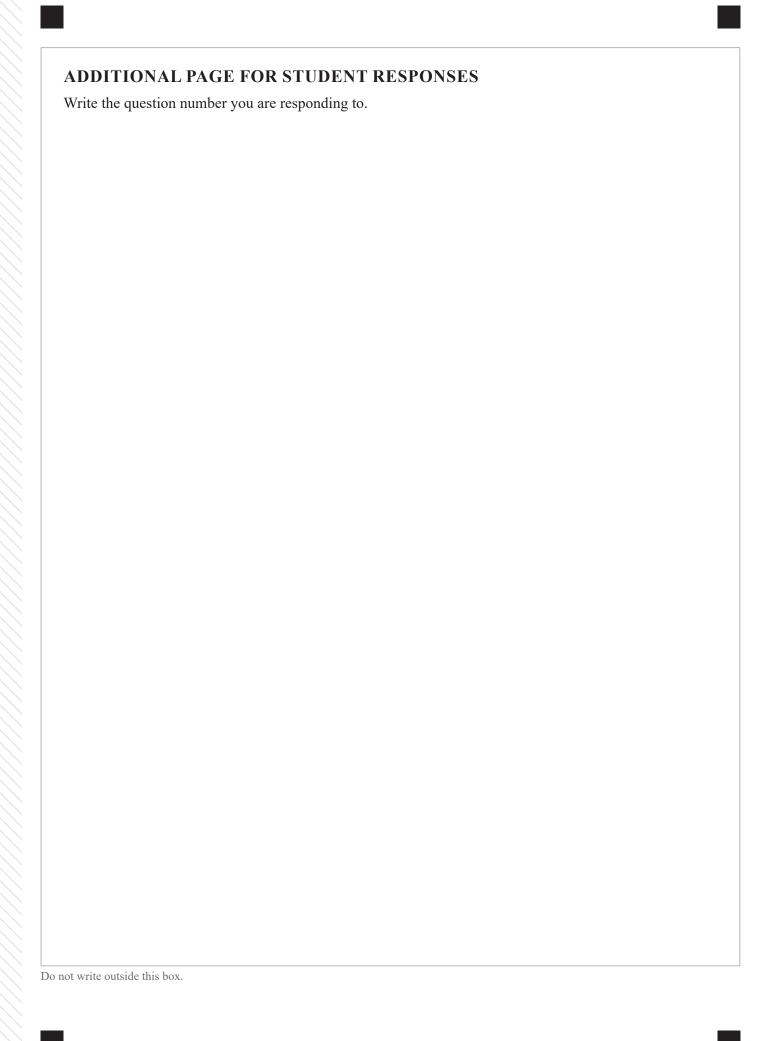
$$2\text{HI}(g) \iff \text{H}_2(g) + \text{I}_2(g)$$
 $\Delta H = +53.6 \text{ kJ mol}^{-1}$

$$\Delta H = +53.6 \text{ kJ mol}^{-1}$$

Experiment	Initial concentration (mol L ⁻¹)			$\begin{array}{c} \textbf{Equilibrium concentration} \\ \textbf{(mol L}^{-1}\textbf{)} \end{array}$			K _c
	[HI]	[H ₂]	$[I_2]$	[HI]	[H ₂]	$[I_2]$	
1	0.08	0.00	0.00		0.01		2.78×10^{-2}
2	0.00	0.06	0.06	0.06	0.03	0.03	

(a)	Determine the concentration	of $HI(g)$ and $I_2(g)$ at equi-	librium for experiment 1.	[2 marks]
-----	-----------------------------	----------------------------------	---------------------------	-----------

[HI]: _____


[I₂]:_____

(c)	Determine which experiment was conducted at a higher temperature.		
	Explain your reasoning.	[3 marks	

QUESTION 9 (4 marks) Aspirin (C₉H₈O₄) can be produced from a reaction between salicylic acid (C₇H₆O₃) and acetic anhydride (C₄H₆O₃) with ethanoic acid being a minor product. $C_7 H_6 O_3(s) \ + \ C_4 H_6 O_3(aq) \ \to \ C_9 H_8 O_4(s) \ + \ C_2 H_4 O_2(aq)$ Calculate the mass of salicylic acid required to produce 8.25 g of aspirin if the percentage yield of the reaction is 60%. Show your working. **END OF PAPER**

References

Question 4

Minor adaptation from Coblentz Society, Inc., 2-Butanol 2018, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Nist.gov, National Institute of Standards and Technology, U.S. Secretary of Commerce https://webbook.nist.gov/cgi/cbook.cgi?ID=C78922&Type=IR-SPEC&Index=1

© State of Queensland (QCAA) 2023

 $\label{licence:https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2023$