LUI								School code				
Schoo	ol nan	ne										
Given	name	e/s							Attach	_		
Famil	y nan	ne						barco	ode ID	label	here	
Exte	rnal	asse	ssme	nt 20)23			Book	of		books	s used
								Question an	d res	spon	se b	ook

Biology

Paper 2

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response book.
- · Write using black or blue pen.
- QCAA-approved calculator permitted.
- · Planning paper will not be marked.

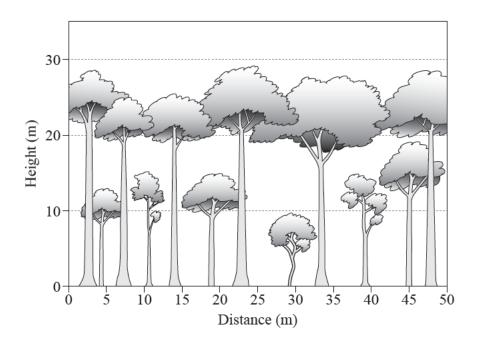
Section 1 (43 marks)

· 9 short response questions

DO NOT WRITE ON THIS PAGE THIS PAGE WILL NOT BE MARKED

Section 1

Instructions


- If you need more space for a response, use the additional pages at the back of this book.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.

DO NOT WRITE ON THIS PAGE

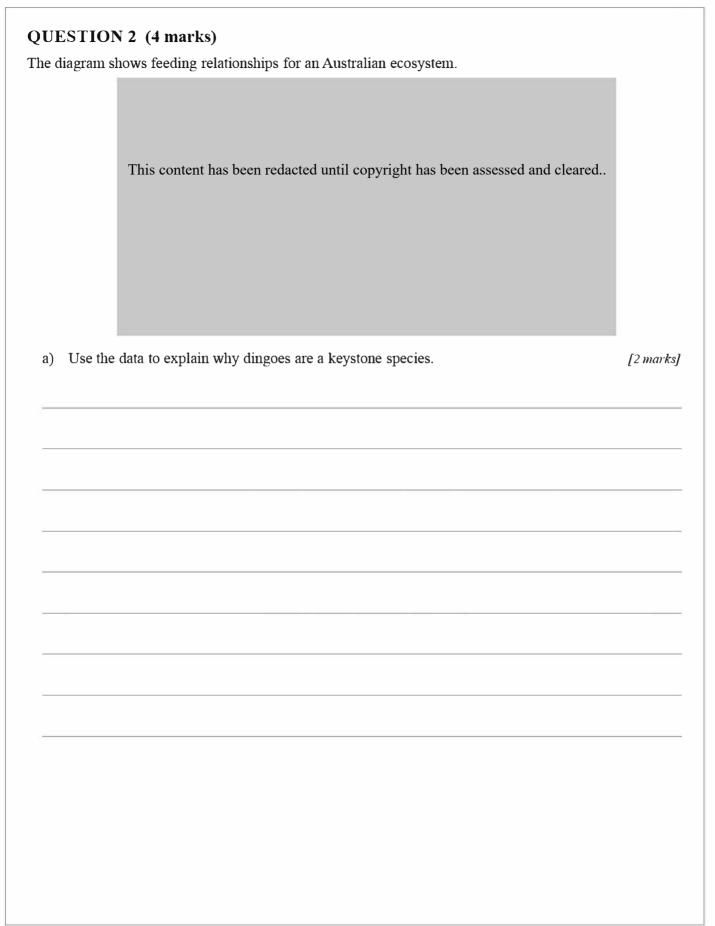
THIS PAGE WILL NOT BE MARKED

QUESTION 1 (6 marks)

The profile diagram shows a representative section of an ecosystem.

This table can be used to classify ecosystems based on Specht's classification system.

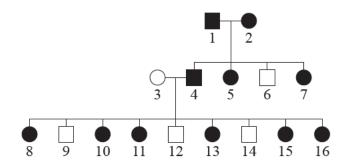
	Foliage cover of tallest plant layer					
Life form and height of tallest stratum	Dense (70–100%)	Mid-dense (30–70%)	Sparse (10–30%)			
Trees >30 m	Tall closed-forest	Tall open-forest	Tall woodland			
Trees 10–30 m	Closed-forest	Open-forest	Woodland			
Trees 5–10 m	Low closed-forest	Low open-forest	Low woodland			
Shrubs 2–8 m	Closed-scrub	Open-scrub	Tall shrubland			

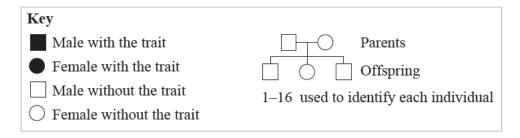

a) Classify this ecosystem.

[1 mark]

b) Describe how field data could be collected for the purpose of classifying this ecosystem using Specht's classification system. Include at least one strategy to minimise bias.

[3 marks]


c)	Explain how Specht's classification system could be used to monitor how the ecosystem recovers after a logging event that removes 80% of trees from the tallest plant layer.	D mar	
c)	Explain how Specht's classification system could be used to monitor how the ecosystem recovers after a logging event that removes 80% of trees from the tallest plant layer.	[2 mari	
c)	ecosystem recovers after a logging event that removes 80% of trees from the tallest	[2 mari	
c)	ecosystem recovers after a logging event that removes 80% of trees from the tallest	[2 mark	
c)	ecosystem recovers after a logging event that removes 80% of trees from the tallest	[2 marl	
c)	ecosystem recovers after a logging event that removes 80% of trees from the tallest	[2 marl	
c)	ecosystem recovers after a logging event that removes 80% of trees from the tallest	[2 marl	
c)	ecosystem recovers after a logging event that removes 80% of trees from the tallest	[2 mar)	
c)	ecosystem recovers after a logging event that removes 80% of trees from the tallest	[2 marl	
c)	ecosystem recovers after a logging event that removes 80% of trees from the tallest	[2 marl	
c)	ecosystem recovers after a logging event that removes 80% of trees from the tallest	[2 mar)	

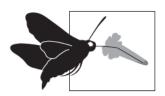


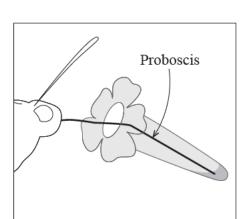
b) Predict the effect a drastic reduction in the number of dingoes would have on the termite population. Justify your response.	[2 mark

QUESTION 3 (7 marks)

The chart shows the inheritance pattern of a trait, which is thought to be sex-linked dominant.

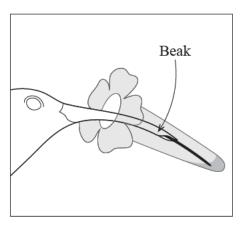
a) Identify how many offspring of individuals 1 and 2 have the trait.


[1 mark]


	y your response using a Punnett square.	[4 mark
c) Infer	the genotype of individual 6. Explain your reasoning.	[2 mark
c) Infer	the genotype of individual 6. Explain your reasoning.	[2 mark
c) Infer	the genotype of individual 6. Explain your reasoning.	[2 mark
c) Infer	the genotype of individual 6. Explain your reasoning.	[2 mark
c) Infer	the genotype of individual 6. Explain your reasoning.	[2 mark
c) Infer	the genotype of individual 6. Explain your reasoning.	[2 mark
c) Infer	the genotype of individual 6. Explain your reasoning.	[2 mark
c) Infer	the genotype of individual 6. Explain your reasoning.	[2 mark
c) Infer	the genotype of individual 6. Explain your reasoning.	[2 mark
c) Infer	the genotype of individual 6. Explain your reasoning.	[2 mark
c) Infer	the genotype of individual 6. Explain your reasoning.	[2 mark

QUESTION 4 (5 marks)

The hummingbird hawkmoth (phylum: *Arthropoda*) is named for its similarity to hummingbirds (phylum: *Chordata*). The two species have independently developed similar feeding structures, which they use to draw nectar from tube-shaped flowers. Both species help plants reproduce by distributing their pollen.


Hummingbird hawkmoth

Hummingbird

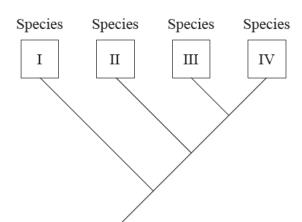
 Identify the diversification pattern demonstrated by the hummingbird and the hummingbird hawkmoth.

[1 mark]

b)	Use the principles of natural selection to explain the similarities between the two species.	[2 marks
c)	Explain how coevolution of the hummingbird hawkmoth and tube-shaped flowers	12 mark
c)	Explain how coevolution of the hummingbird hawkmoth and tube-shaped flowers may have occurred.	[2 marks
c)		[2 marks

QUESTION 5 (3 marks)

Nucleic acid sequences were used to investigate evolutionary relationships between four species.


Species	Nucleic acid sequence
B. bartonus	GACCGCATTTACGTA
B. deakinii	GACGTCATATCCGTA
B. reidus	GACCGCATTTCCGTA
B. watsonii	GACGGCATATCCGTA

a) Explain how data from conserved molecular sequences can be used to estimate time since divergence.

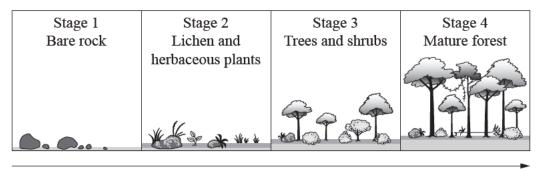
[2 marks]

b) Use the data to infer species II–IV in the cladogram.

[1 mark]

I: B. bartonus

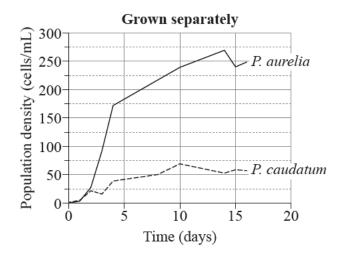
II: _____

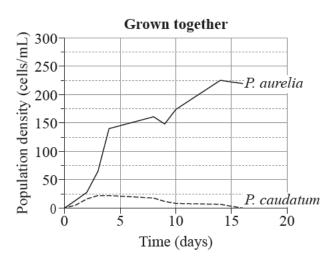

III: _____

IV: _____


QUESTION 7 (5 marks)

The diagram shows the stages of succession in an ecosystem.


Time


a)	Identify the type of ecological succession depicted. Explain your reasoning.	[2 marks]
b)	Infer two features of the species in stage 2 and describe the role of these species in	
	ecological succession.	[3 marks]

QUESTION 9 (7 marks)

The graphs show the findings of an experiment investigating the competitive exclusion principle. Two species of protozoa (*P. aurelia* and *P. caudatum*) were grown separately and together under identical conditions.

a) Identify the population density of *P. caudatum* on day 10 when grown separately.


[1 mark]

b) Compare the growth of *P. aurelia* in the two graphs.

[3 marks]

c) Use the	ne data to explain the competitive exclusion principle.	[3 mark
	END OF PAPER	

References

Question 1

Figure inspired by Lowman, MD 1995, 'Herbivory in Australian forest — a comparison of dry sclerophyll and rain forest canopies', *Proceedings of the Linnean Society of New South Wales*, vol. 115, pp. 77–87, https://canopymeg.com/PDFs/papers/0049.pdf.

Table of Specht's 1970 classification scheme found at Australian National Herbarium 2015, 'A simplified look at Australia's vegetation', www.anbg.gov.au/aust-veg/veg-map.html.

Question 2

Adapted from The Savage Savanna, Food web of Australian tropical savanna, https://visitthesavannahtoday.weebly.com/food-web.html.

Question 4

Hummingbird moth: Ahisgett, 'Hummingbird moth 3', *Openverse*, https://search-production.openverse. engineering/image/c0e5f29f-948f-4fb8-9716-c2b4f9be744f.

Hummingbird: Sharp Photography 2010, 'Purple-throated carib hummingbird feeding', *Wikimedia Commons*, https://commons.wikimedia.org/w/index.php?curid=12374160.

Question 7

Image adapted from:

Rcole17 2015, 'Primary succession diagram', *Wikimedia Commons*, https://commons.wikimedia.org/wiki/File:Primary Succession Diagram.svg.

LucasMartinFrey 2011, 'Forest succession depicted over time', *Wikimedia Commons*, https://commons.wikimedia.org/wiki/File:Forest_succession_depicted_over_time.png.

Question 9

Adapted from OpenStax 2016, *Biology*, Rice University Publishers. OpenStax is licensed under Creative Commons Attribution License v4.0.

© State of Queensland (QCAA) 2023

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. Third-party materials referenced above are excluded from this licence. | Attribution: © State of Queensland (QCAA) 2023