External assessment 2024

Multiple choice question book

# **Specialist Mathematics**

Paper 1 — Technology-free

## **General instruction**

• Work in this book will not be marked.





## Section 1

### Instruction

• Respond to these questions in the question and response book.

## **QUESTION 1**

Repeated random samples will be used to calculate a large number of 90% confidence intervals for a population mean  $\mu$ .

Which statement **best** describes the possible outcomes?

- (A) Approximately 90% of the intervals will contain  $\mu$ .
- (B) More than 90% of the intervals will contain  $\mu$ .
- (C) Less than 90% of the intervals will contain  $\mu$ .
- (D) Exactly 90% of the intervals will contain  $\mu$ .

## **QUESTION 2**

Given that  $\frac{A}{x-2} + \frac{3}{x} = \frac{x-6}{x(x-2)}$ , determine the value of A.

- (A) -4
- (B) -2
- (C) 2
- (D) 4

#### **QUESTION 3**

Consider a proof of the proposition  $\sum_{j=1}^{n} (2j-1) = n^2 \quad \forall n \in Z^+$  using mathematical induction. Within the proof of the inductive step, the proposition for n = k+1 could be expressed as

(A) 
$$\sum_{j=1}^{k+1} (2j-1) = k^2 + 2k + 1$$

(B) 
$$\sum_{j=1}^{k+1} (2k+1) = k^2 + 2k + 1$$

(C) 
$$\sum_{j=1}^{k+1} (2j-1) = k^2 + 1$$

(D) 
$$\sum_{j=1}^{k+1} (2k+1) = k^2 + 1$$

#### **QUESTION 4**

A plane contains the point (1, 3, 1) and is normal to the vector  $\hat{i} + \hat{j} + 2\hat{k}$ . The vector equation of the plane is

(A) 
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$$
  
(B) 
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
  
(C) 
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \times \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \times \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$$
  
(D) 
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$$

## **QUESTION 5**

The augmented matrix shown is produced when a Gaussian elimination technique is used to solve a certain system of equations with three variables.

$$\begin{bmatrix} 1 & 4 & 2 & | & -10 \\ 0 & 2 & 0 & | & 5 \\ 0 & 0 & 3 & | & 2 \end{bmatrix}$$

Given that row 1 values of the matrix represent x + 4y + 2z = -10, the unique solution for y is

(A)  $\frac{2}{5}$ (B)  $\frac{2}{3}$ (C)  $\frac{3}{2}$ (D)  $\frac{5}{2}$ 

## **QUESTION 6**

Players P, Q, R and S played each other once in a competition where there were no draws. Only the following results are known.

- Player P defeated players Q and R.
- Player Q defeated two players.
- Players R and S each defeated one player.

Based on these results, a dominance matrix N was partially constructed as shown.

$$N = \begin{bmatrix} P & Q & R & S \\ P & 0 & 1 & 1 & 0 \\ Q & \Box & \Box & \Box & \Box \\ R & 0 & 0 & 0 & 1 \\ S & 1 & 0 & 0 & 0 \end{bmatrix}$$

The completed matrix N is



## **QUESTION 7**

A, B and C are points in three-dimensional space. If  $2\overrightarrow{AB} = \overrightarrow{BC}$ , then

- (A)  $|\vec{AB}|$  is twice the value of  $|\vec{BC}|$ .
- (B)  $\overrightarrow{AB}$  and  $\overrightarrow{BC}$  are perpendicular.
- (C) only one plane contains A, B and C.
- (D) a straight line passes through A, B and C.

## **QUESTION 8**

Given 
$$z = 2 \operatorname{cis}\left(\frac{\pi}{3}\right)$$
, determine  $z^3$ .

- (A) -8
- (B) -6
- (C) 6
- (D) 8

## **QUESTION 9**

Use a suitable double-angle identity to determine  $\int 2\sin^2(x) dx$ .

- (A)  $x-2\sin(2x)+c$
- (B)  $x + 2\sin(2x) + c$

(C) 
$$x - \frac{\sin(2x)}{2} + c$$

(D) 
$$x + \frac{\sin(2x)}{2} + c$$

### **QUESTION 10**

The polynomial  $P(z) = z^3 - 2iz^2 + z - 2i$  can be expressed in factorised form as  $P(z) = (z - i)(z^2 + biz + 2)$ , where  $b \in Z$ .

Determine the value of *b*.

- (A) 2
- (B) 1
- (C) -1
- (D) –2

© State of Queensland (QCAA) 2024 Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2024