|   | Œ   |   |
|---|-----|---|
|   | ŀ   |   |
|   | h   | ŝ |
|   | E   | ė |
|   | E   |   |
|   | 5   |   |
|   | ы   | ć |
|   | á   |   |
|   | 5   |   |
|   | S   | é |
|   |     |   |
|   | H   |   |
|   |     | ١ |
| Ľ | F   |   |
|   |     |   |
|   | Ē   |   |
|   |     |   |
|   | E   |   |
|   | F   |   |
|   | F   |   |
|   | и   | c |
|   | 6   | 1 |
|   | -   |   |
|   | ļα  |   |
|   | þ   |   |
|   | Ç   |   |
|   | E   | 9 |
|   | F   |   |
|   |     | 2 |
|   | ĥ   |   |
|   | ĥ   |   |
|   | (a) | 6 |
|   | e   |   |
|   | ï   |   |
|   |     | , |
|   |     |   |
| K | ä   |   |
|   | ö   | į |
|   | Œ   | ۰ |
|   |     |   |
| k | ď   | , |
|   | ь   |   |
|   | E   | è |
|   | E   |   |
|   | F   |   |
|   | ļ   |   |
|   | E   |   |
|   | Б   |   |
|   | Ľ   |   |
|   | Œ   |   |
|   | Р   |   |
|   | Е   |   |
|   | 5   | i |
|   | e   |   |
|   | μ   |   |
|   | E   |   |
|   | ρ   | i |
|   | Ŀ   |   |
|   |     |   |
|   |     |   |
|   |     |   |
|   |     |   |
|   |     |   |
|   |     |   |
|   | E   |   |
|   | E   |   |
|   | F   |   |
|   |     | Ś |
|   | H   |   |
|   | ä   |   |
|   |     |   |
|   | Ю   | þ |
|   |     |   |
| P | 6.  |   |
|   | 1   | Š |

| LUI   |        |      |      |       |     |  |  | School code |            |          |        |
|-------|--------|------|------|-------|-----|--|--|-------------|------------|----------|--------|
| Schoo | ol nam | ie   |      |       |     |  |  |             |            |          |        |
| Given | name   | e/s  |      |       |     |  |  |             | Attach yo  |          |        |
| Famil | y nam  | ne   |      |       |     |  |  | barco       | ode ID 1al | oel here |        |
| Exte  | rnal   | asse | ssme | nt 20 | )24 |  |  | Book        | of         | book     | s used |
|       |        |      |      |       |     |  |  | Question an | d resp     | onse b   | ook    |

# **General Mathematics SEE**

SEE 1

#### Time allowed

- Planning time 15 minutes
- Working time 180 minutes

#### **General instructions**

- Answer all questions in this question and response book.
- Write using black or blue pen.
- QCAA-approved scientific calculator permitted.
- QCAA formula book provided.
- Planning paper will not be marked.

#### Section 1 (52 marks)

• 6 short response questions

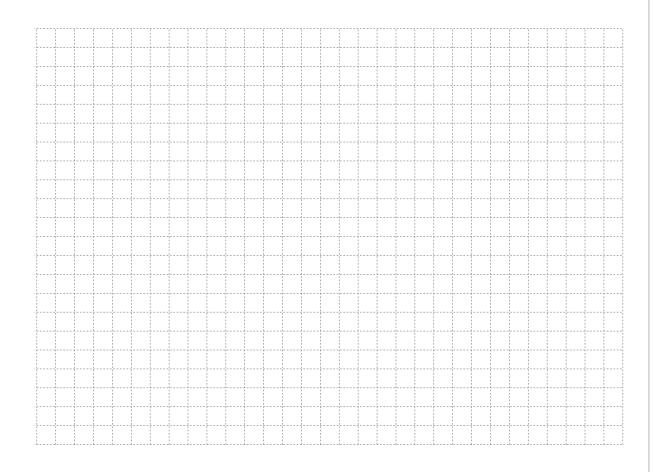


# DO NOT WRITE ON THIS PAGE THIS PAGE WILL NOT BE MARKED

# **Section 1**

## **Instructions**

- Questions worth more than one mark require mathematical reasoning and/or working to be shown to support answers.
- If you need more space for a response, use the additional pages at the back of this book.
  - On the additional pages, write the question number you are responding to.
  - Cancel any incorrect response by ruling a single diagonal line through your work.
  - Write the page number of your alternative/additional response, i.e. See page ...
  - If you do not do this, your original response will be marked.


#### DO NOT WRITE ON THIS PAGE

#### THIS PAGE WILL NOT BE MARKED

## **QUESTION 1 (4 marks)**

a) Use Stimulus 1 in the stimulus book to construct a scatterplot of the koala density at Koala Coast.

[2 marks]



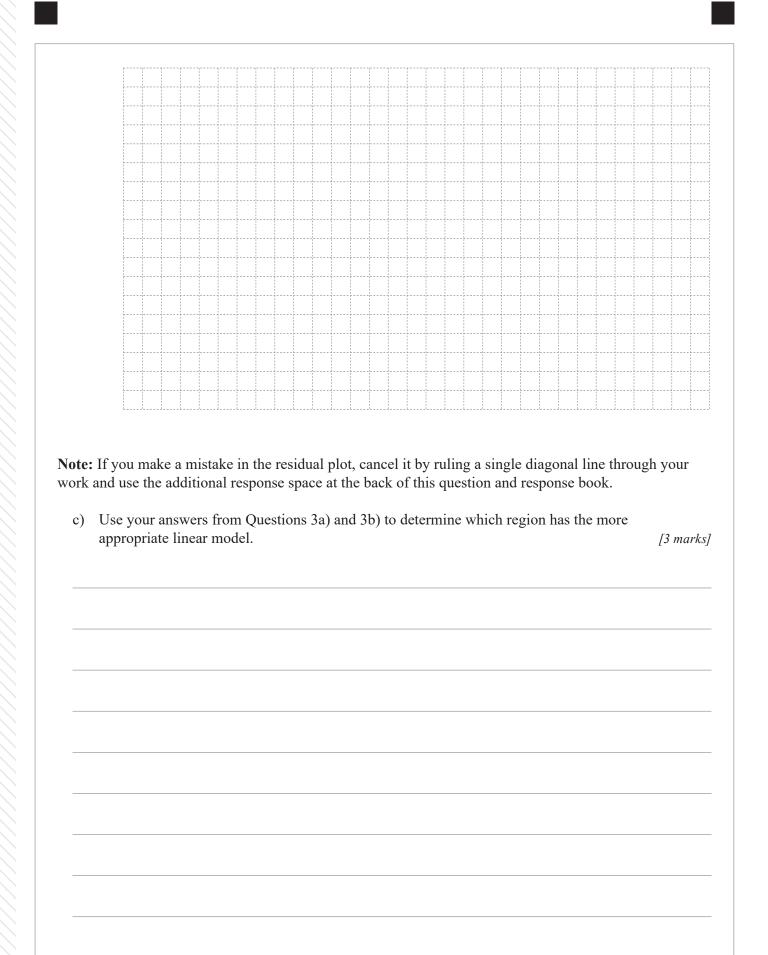
**Note:** If you make a mistake in the scatterplot, cancel it by ruling a single diagonal line through your work and use the additional response space at the back of this question and response book.

b) Use your scatterplot from Question 1a) to describe the association between the two variables in terms of direction and strength.

[2 marks]

|    | Use Stimulus 2 in the stimulus book to develop a linear model that can be used to predict koala density at Pine Rivers. | [3 mark  |
|----|-------------------------------------------------------------------------------------------------------------------------|----------|
|    |                                                                                                                         |          |
|    |                                                                                                                         |          |
|    |                                                                                                                         |          |
|    |                                                                                                                         |          |
|    |                                                                                                                         |          |
|    |                                                                                                                         |          |
|    |                                                                                                                         |          |
|    |                                                                                                                         |          |
|    |                                                                                                                         |          |
|    |                                                                                                                         |          |
|    |                                                                                                                         |          |
| b) | II                                                                                                                      |          |
| U) | Use your linear equation from Question 2a) to predict Pine Rivers koala density at the beginning of 2014.               | [3 mark  |
|    | the beginning of 2014.                                                                                                  | [3 mark  |
|    | the beginning of 2014.                                                                                                  | [3 mark, |
|    | the beginning of 2014.                                                                                                  | [3 mark. |
|    | the beginning of 2014.                                                                                                  | [3 mark. |
|    | the beginning of 2014.                                                                                                  | [3 mark. |
|    | the beginning of 2014.                                                                                                  | [3 mark. |
|    | the beginning of 2014.                                                                                                  | [3 mark. |

| Use your linear model from Question 2a) to determine which region will have lower |          |
|-----------------------------------------------------------------------------------|----------|
| koala density at the beginning of 2025.                                           | [5 marks |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |


# DO NOT WRITE ON THIS PAGE THIS PAGE WILL NOT BE MARKED

# **CONTINUE TO THE NEXT PAGE**

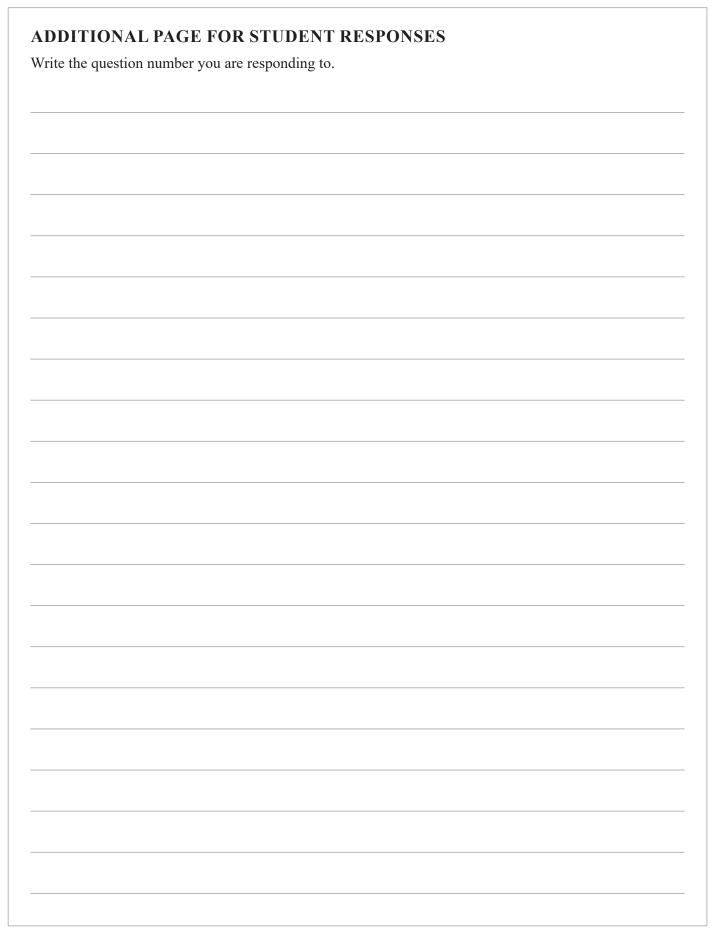
| a) | Use the data from Stimulus 1 and the least-squares regression line equation from Question 2c) to develop a residual plot for the Koala Coast model. | [5 marks |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Ko | ala Coast model:                                                                                                                                    |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |
|    |                                                                                                                                                     |          |

|   |             |      |        |   |   |          |      |      |      |   |          |         |      |       |   |      |          |   |   |   |   |   | _  |
|---|-------------|------|--------|---|---|----------|------|------|------|---|----------|---------|------|-------|---|------|----------|---|---|---|---|---|----|
|   | · · · · · · |      |        |   |   |          |      |      |      |   | <u> </u> | ]       |      | <br>  | [ |      | <u> </u> |   | ] |   |   | ] | -1 |
|   |             | <br> | <br>   |   |   |          | <br> | <br> | <br> |   |          |         |      | <br>  |   |      |          |   |   |   |   |   |    |
|   |             | <br> | <br>   |   |   |          | <br> | <br> | <br> |   |          |         |      | <br>  |   | <br> |          |   |   |   |   |   | -  |
|   |             | <br> | <br>   |   |   |          | <br> | <br> | <br> |   |          |         |      | <br>  |   | <br> |          |   |   |   |   |   | -  |
|   |             | <br> | <br>   |   |   |          |      | <br> |      |   |          |         |      | <br>  |   | <br> |          |   |   |   |   |   | _  |
|   |             | <br> | <br>   |   |   |          | <br> | <br> | <br> |   | ļ        |         |      | <br>  | ļ | <br> |          |   | ļ | ļ | ļ |   | -  |
|   |             | <br> | <br>   |   |   |          | <br> | <br> | <br> |   |          |         |      | <br>  |   | <br> |          |   |   | ļ |   |   | -  |
|   | ļ           | <br> | <br>   |   |   |          | <br> | <br> | <br> |   | ļ        |         | <br> | <br>  |   | <br> | ¦<br>    |   | ļ | ļ | ļ |   |    |
|   |             | <br> | <br>   |   |   |          | <br> | <br> | <br> |   |          |         |      | <br>  |   | <br> | ¦        |   |   | ļ |   |   |    |
|   |             | <br> | <br>   |   |   |          | <br> | <br> | <br> |   |          |         |      | <br>  |   | <br> |          |   |   | ļ |   |   |    |
|   |             | <br> | <br>   | 1 |   |          |      | <br> | <br> |   | 1        |         |      | <br>  |   | <br> |          |   |   | ļ |   |   |    |
|   |             | <br> |        |   |   |          |      | <br> |      |   |          | <u></u> |      | <br>  |   | <br> |          |   |   |   |   |   |    |
|   |             | <br> | <br>   |   |   |          | <br> | <br> | <br> | ļ | ļ        | ļ       |      | <br>  | ļ | <br> |          |   | ļ | ļ | ļ |   |    |
|   |             | <br> | <br>   |   |   |          | <br> | <br> | <br> |   | ļ        | ļ       | <br> | <br>  | ļ | <br> |          |   | ļ | ļ |   |   |    |
|   | ļ           | <br> | <br>   |   |   |          | <br> | <br> | <br> |   | ļ        |         |      | <br>  |   | <br> |          |   |   |   |   |   |    |
| i | i           | <br> | <br>ii |   | i | <u>i</u> | <br> | <br> | <br> | i | l        | i       |      | <br>i | i | <br> | i        | i | J | i | i | j |    |

| b) Use the data from Stimulus 2 and your linear equation from Question 2a) to develop a residual plot for the Pine Rivers model. | [5 mark. |
|----------------------------------------------------------------------------------------------------------------------------------|----------|
| Pine Rivers model:                                                                                                               |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |

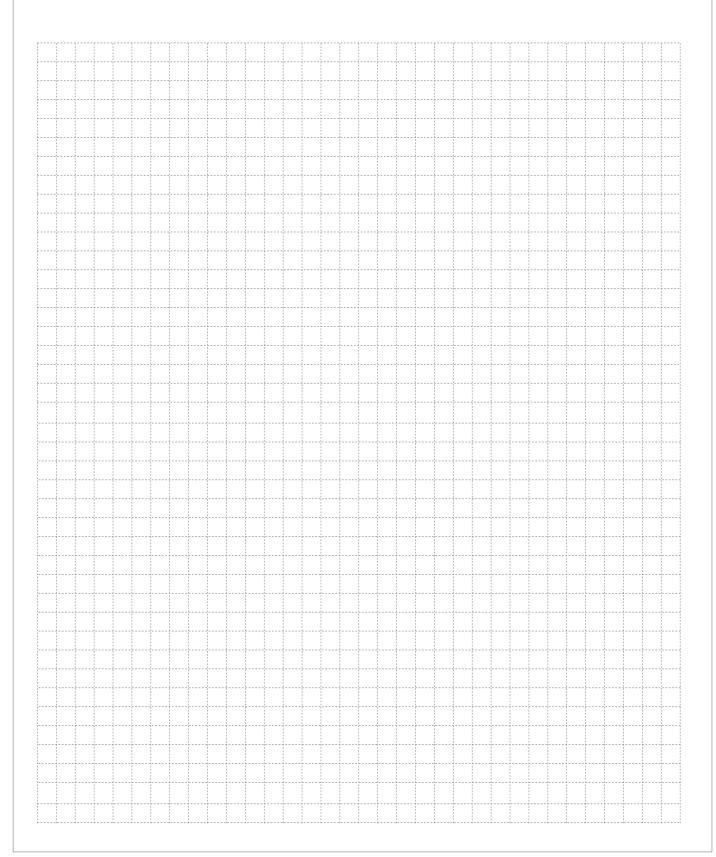


| a) | Use Stimulus 3 in the stimulus book to develop a geometric model that can be used to predict the total area of koala habitat zone in Queensland. The model must be developed using data points for 2016 and 2023. | [9 marks |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |
|    |                                                                                                                                                                                                                   |          |

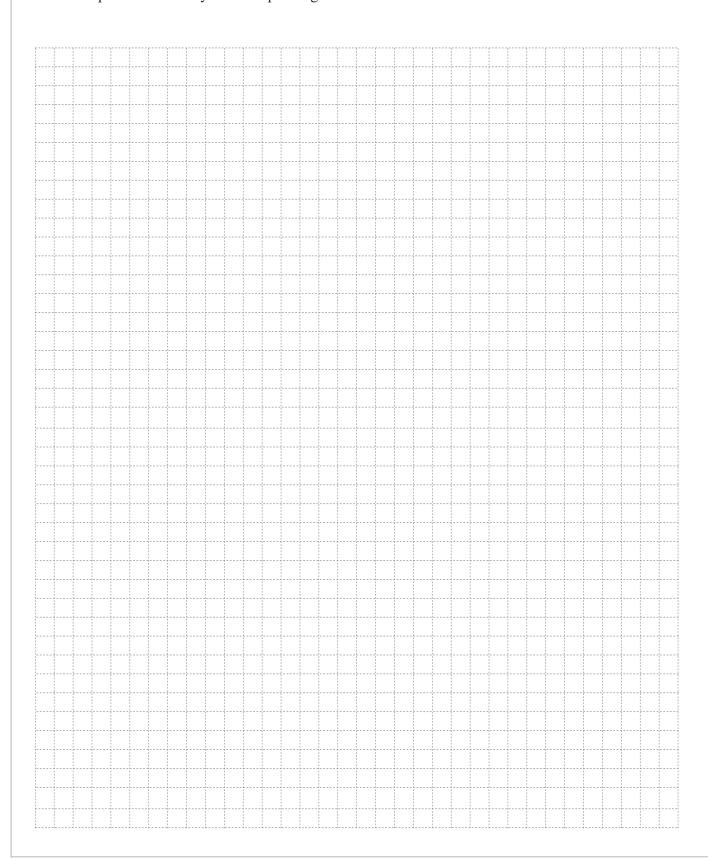

| mathe | habitat zone will exceed matical reasoning. |  | C | [3 mark |
|-------|---------------------------------------------|--|---|---------|
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |
|       |                                             |  |   |         |

| QUESTION 5 (5 marks)                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| It has been determined that planting more trees will improve koala density and restore koala numbers. A target has been set for planting an additional 110 hectares of koala habitat in Flinders Peak Conservation Park by 2032. |
| Flinders Peak Conservation Park contains 652 hectares of koala habitat in 2024. Eighteen hectares of koala habitat will be planted at the start of each year.                                                                    |
| Use an arithmetic sequence, where $t_n$ is the total hectares after $n$ years and $t_1$ is the total hectares in 2024, to determine if the target will be met at the start of 2032.                                              |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |

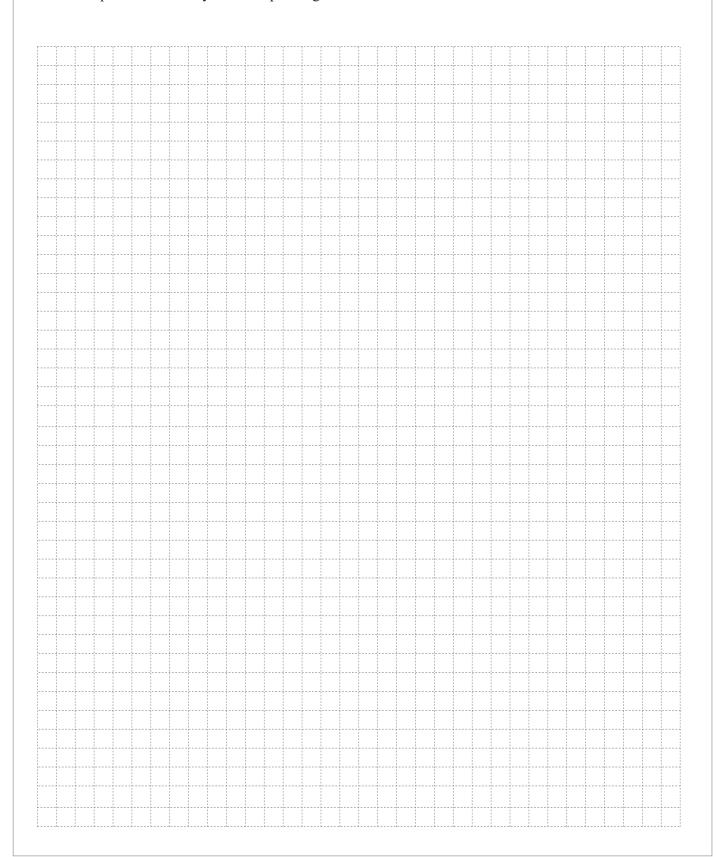
| You have bee were the same | n asked to determine the year when the koala populations in Koala Coast and Pine River<br>e.                                                                               |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | ar model for Pine Rivers from Question 2a) and the least-squares regression line for from Question 2c) to determine the year when the populations of koalas were the same. |
| The Koala Co               | past region is 235 000 hectares and the Pine Rivers region is 250 000 hectares.                                                                                            |
| Your response              | e must include a graph of the koala populations. Use the grid provided over the page.                                                                                      |
| Evaluate the 1             | reasonableness of your solution using mathematical reasoning.                                                                                                              |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |
|                            |                                                                                                                                                                            |



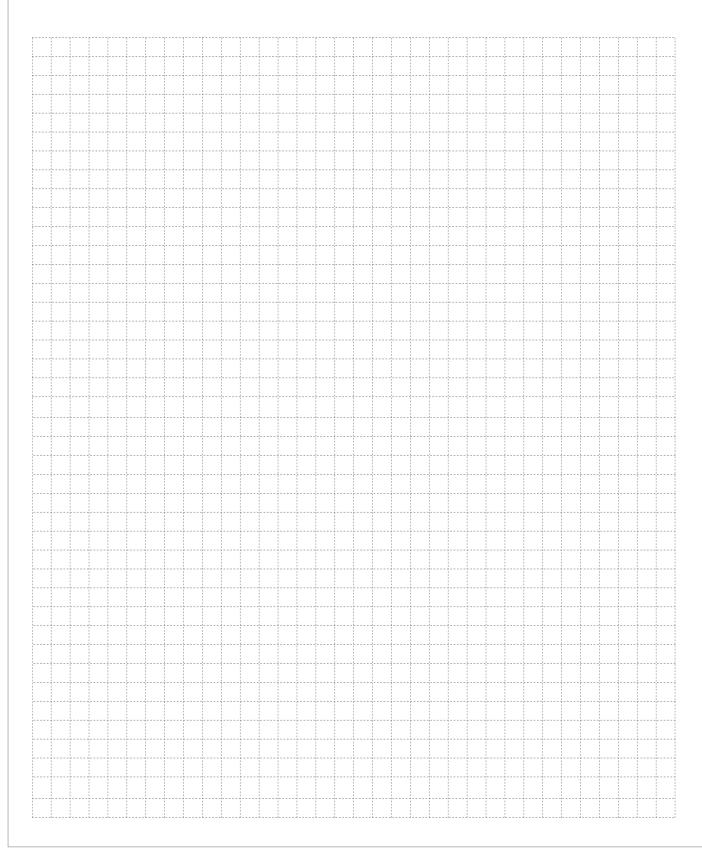

|   |       |   |   |   |            |       |      |   |   |          |   |   |          |   |   |   |   |   |       |       |       |   |       | _ |
|---|-------|---|---|---|------------|-------|------|---|---|----------|---|---|----------|---|---|---|---|---|-------|-------|-------|---|-------|---|
|   |       |   |   |   |            |       |      |   |   |          |   |   |          |   |   |   |   |   |       |       |       |   |       | _ |
| ŗ | <br>, | r | · | · | ; <u>-</u> | <br>, | <br> |   | ŗ | -,       | 1 | · | ·,       | , | · |   | ļ |   | <br>ļ | ŗ     | <br>· |   | <br>· |   |
|   | <br>  |   |   |   |            | <br>  | <br> |   |   |          |   |   |          |   |   |   |   |   | <br>  |       | <br>  |   | <br>  |   |
|   | <br>  |   |   | ļ |            | <br>  | <br> |   |   | <u> </u> |   |   | <u> </u> |   | ļ | ļ |   |   | <br>  |       | <br>  |   | <br>ļ |   |
|   | <br>  |   |   |   |            | <br>  | <br> |   |   |          |   |   | ļ        |   |   |   |   |   | <br>  |       | <br>  |   | <br>  |   |
|   | <br>  |   |   |   |            | <br>  | <br> |   |   |          |   |   |          |   |   |   |   |   | <br>  |       | <br>  |   | <br>  | - |
|   | <br>  |   |   |   |            | <br>  | <br> |   |   |          |   |   | <u> </u> |   |   |   |   |   | <br>  |       | <br>  |   | <br>  |   |
| ļ | <br>  |   |   | ļ |            | <br>  |      |   | ļ |          |   |   | ļ        |   | ļ |   |   |   | <br>  |       | <br>  |   | <br>  | - |
|   | <br>  |   |   | ļ |            | <br>  | <br> |   |   |          |   |   | ļ        |   |   |   |   |   | <br>  |       | <br>ļ | ļ | <br>  |   |
|   | <br>  |   |   |   |            | <br>  | <br> |   |   |          |   |   | ļ        |   |   |   |   |   | <br>  | ļ<br> | <br>  |   | <br>  |   |
|   | <br>  |   |   |   |            | <br>  | <br> |   |   |          |   |   |          |   |   |   |   |   | <br>  |       | <br>  |   | <br>  | - |
|   | <br>  |   |   |   |            | <br>  | <br> |   |   |          |   |   |          |   |   |   |   |   | <br>  |       | <br>  |   | <br>  | - |
|   |       |   |   |   |            | <br>  |      |   |   |          |   |   |          |   |   |   |   |   |       |       | <br>  |   | <br>  |   |
|   | <br>  |   |   |   |            | <br>  | <br> |   |   |          |   |   | ļ        |   |   |   |   |   | <br>  |       | <br>  |   | <br>  | - |
| ļ | <br>  |   |   |   |            | <br>  | <br> |   |   |          |   |   | ļ        |   |   |   |   |   | <br>  |       | <br>ļ | ļ | <br>  |   |
|   | <br>  |   |   |   |            | <br>  | <br> |   |   |          |   |   |          |   |   |   |   |   | <br>  |       | <br>  |   | <br>  |   |
| L | <br>  |   |   | i |            | <br>  | <br> | i | L |          |   | L |          |   | L |   | i | L | <br>J | i     | <br>J | · | <br>J | i |







Write the question number you are responding to.




Write the question number you are responding to.



Write the question number you are responding to.



Write the question number you are responding to.



© State of Queensland (QCAA) 2024

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2024